
Package: MKpower (via r-universe)
September 4, 2024

Version 0.9
Date 2024-04-05

Title Power Analysis and Sample Size Calculation

Author Matthias Kohl [aut, cre] (0000-0001-9514-8910)

Maintainer Matthias Kohl <Matthias.Kohl@stamats.de>

Depends R(>= 3.5.0)

Imports stats, matrixTests(>= 0.2), ggplot2, MKdescr, MKinfer(>= 0.4),
qqplotr, coin, mvtnorm

Suggests knitr, rmarkdown

VignetteBuilder knitr

Description Power analysis and sample size calculation for Welch and
Hsu (Hedderich and Sachs (2018), ISBN:978-3-662-56657-2)
t-tests including Monte-Carlo simulations of empirical power
and type-I-error. Power and sample size calculation for
Wilcoxon rank sum and signed rank tests via Monte-Carlo
simulations. Power and sample size required for the evaluation
of a diagnostic test(-system) (Flahault et al. (2005),
<doi:10.1016/j.jclinepi.2004.12.009>; Dobbin and Simon (2007),
<doi:10.1093/biostatistics/kxj036>) as well as for a single
proportion (Fleiss et al. (2003), ISBN:978-0-471-52629-2;
Piegorsch (2004), <doi:10.1016/j.csda.2003.10.002>; Thulin
(2014), <doi:10.1214/14-ejs909>), comparing two negative
binomial rates (Zhu and Lakkis (2014), <doi:10.1002/sim.5947>),
ANCOVA (Shieh (2020), <doi:10.1007/s11336-019-09692-3>),
reference ranges (Jennen-Steinmetz and Wellek (2005),
<doi:10.1002/sim.2177>), and multiple primary endpoints (Sozu
et al. (2015), ISBN:978-3-319-22005-5).

License LGPL-3

URL https://github.com/stamats/MKpower

Repository https://stamats.r-universe.dev
RemoteUrl https://github.com/stamats/mkpower

RemoteRef HEAD
RemoteSha 92dfb9ac5b8c4a2f0374ae726e36f49a17279166

1

https://doi.org/10.1016/j.jclinepi.2004.12.009
https://doi.org/10.1093/biostatistics/kxj036
https://doi.org/10.1016/j.csda.2003.10.002
https://doi.org/10.1214/14-ejs909
https://doi.org/10.1002/sim.5947
https://doi.org/10.1007/s11336-019-09692-3
https://doi.org/10.1002/sim.2177
https://github.com/stamats/MKpower

2 MKpower-package

Contents
MKpower-package . 2
hist . 3
power.ancova . 4
power.diagnostic.test . 6
power.hsu.t.test . 8
power.mpe.atleast.one . 10
power.mpe.known.var . 12
power.mpe.unknown.var . 13
power.nb.test . 15
power.prop1.test . 18
power.welch.t.test . 19
print.power.mpe.test . 21
qqunif . 22
sim.power.t.test . 24
sim.power.wilcox.test . 26
sim.ssize.wilcox.test . 28
ssize.pcc . 31
ssize.propCI . 32
ssize.reference.range . 33
volcano . 37

Index 39

MKpower-package Power Analysis and Sample Size Calculation.

Description

Power analysis and sample size calculation for Welch and Hsu (Hedderich and Sachs (2018),
ISBN:978-3-662-56657-2) t-tests including Monte-Carlo simulations of empirical power and type-
I-error. Power and sample size calculation for Wilcoxon rank sum and signed rank tests via Monte-
Carlo simulations. Power and sample size required for the evaluation of a diagnostic test(-system)
(Flahault et al. (2005), <doi:10.1016/j.jclinepi.2004.12.009>; Dobbin and Simon (2007), <doi:10.1093/biostatistics/kxj036>)
as well as for a single proportion (Fleiss et al. (2003), ISBN:978-0-471-52629-2; Piegorsch (2004),
<doi:10.1016/j.csda.2003.10.002>; Thulin (2014), <doi:10.1214/14-ejs909>), comparing two neg-
ative binomial rates (Zhu and Lakkis (2014), <doi:10.1002/sim.5947>), ANCOVA (Shieh (2020),
<doi:10.1007/s11336-019-09692-3>), reference ranges (Jennen-Steinmetz and Wellek (2005), <doi:10.1002/sim.2177>),
and multiple primary endpoints (Sozu et al. (2015), ISBN:978-3-319-22005-5).

Details

library(MKpower)

Author(s)

Matthias Kohl https://www.stamats.de
Maintainer: Matthias Kohl <matthias.kohl@stamats.de>

https://www.stamats.de

hist 3

hist Histograms

Description

Produce histograms for simulations of power and type-I-error of tests.

Usage

S3 method for class 'sim.power.ttest'
hist(x, color.hline = "orange", ...)

S3 method for class 'sim.power.wtest'
hist(x, color.hline = "orange", ...)

Arguments

x object of class sim.power.ttest.
color.hline color of horizontal line indicating uniform distribution of p values.
... further arguments that may be passed through).

Details

The plot generates a ggplot2 object that is shown.

Missing values are handled by the ggplot2 functions.

Value

Object of class gg and ggplot.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

hist

Examples

res1 <- sim.power.t.test(nx = 5, rx = rnorm, rx.H0 = rnorm,
ny = 10, ry = function(x) rnorm(x, mean = 3, sd = 3),
ry.H0 = function(x) rnorm(x, sd = 3))

hist(res1)
res2 <- sim.power.wilcox.test(nx = 6, rx = rnorm, rx.H0 = rnorm,

ny = 6, ry = function(x) rnorm(x, mean = 2),
ry.H0 = rnorm)

hist(res2)

4 power.ancova

power.ancova Power Calculation for ANCOVA

Description

Compute sample size for ANCOVA.

Usage

power.ancova(n = NULL, mu = NULL, var = 1, nr.covs = 1L, group.ratio = NULL,
contr.mat = NULL, sig.level = 0.05, power = NULL, n.max = 1000L,
rel.tol = .Machine$double.eps^0.25)

Arguments

n vector of sample sizes per groups.

mu vector of mean values of the groups.

var error variance.

nr.covs number of covariates (larger or equal than 1).

group.ratio vector of group sizes relative to group 1; i.e., first entry should always be one. If
NULL, a balanced design is used.

contr.mat matrix of contrasts (number of columns must be idential to number of groups).
If NULL, standard ANCOVA contrasts are used; see examples below.

sig.level significance level (type I error probability)

power power of test (1 minus type II error probability)

n.max maximum sample size considered in the computations.

rel.tol relative tolerance passed to function integrate.

Details

Exactly one of the parameters n and power must be passed as NULL, and that parameter is determined
from the other.

The function includes an implementation of the exact approach of Shieh (2020). It is based on the
code provided in the supplement of Shieh (2020), but uses integrate instead of the trapezoid rule
and uniroot for finding the required sample size.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with a note element.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

power.ancova 5

References

G. Shieh (2020). Power Analysis and Sample Size Planning in ANCOVA Designs. Psychometrika
85:101-120. doi:10.1007/s11336019096923.

S.E. Maxwell and H.D. Delaney (2004). Designing experiments and analyzing data: A model
comparison perspective (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

See Also

power.anova.test, power.t.test

Examples

Default matrix of contrasts
3 groups
cbind(rep(1,2), -diag(2))
4 groups
cbind(rep(1,3), -diag(3))

Table 1 in Shieh (2020)
power.ancova(mu=c(400, 450, 500), var = 9900, power = 0.8)
power.ancova(n = rep(63/3, 3), mu=c(400, 450, 500), var = 9900)
power.ancova(mu=c(400, 450, 500), var = 9900, power = 0.8, nr.covs = 10)
power.ancova(n = rep(72/3, 3), mu=c(400, 450, 500), var = 9900, nr.covs = 10)

Table 2 in Shieh (2020)
power.ancova(mu=c(400, 450, 500), var = 7500, power = 0.8)
power.ancova(n = rep(48/3, 3), mu=c(400, 450, 500), var = 7500)
power.ancova(mu=c(400, 450, 500), var = 7500, power = 0.8, nr.covs = 10)
power.ancova(n = rep(60/3, 3), mu=c(400, 450, 500), var = 7500, nr.covs = 10)

Table 3 in Shieh (2020)
power.ancova(mu=c(400, 450, 500), var = 1900, power = 0.8)
power.ancova(n = rep(18/3, 3), mu=c(400, 450, 500), var = 1900)
power.ancova(mu=c(400, 450, 500), var = 1900, power = 0.8, nr.covs = 10)
power.ancova(n = rep(27/3, 3), mu=c(400, 450, 500), var = 1900, nr.covs = 10)

ANOVA approach for Table 1-3
power.anova.test(groups = 3, between.var = var(c(400, 450, 500)),

within.var = 10000, power = 0.8)
power.anova.test(n = 63/3, groups = 3, between.var = var(c(400, 450, 500)),

within.var = 10000)

Table 4 in Shieh (2020)
power.ancova(mu=c(410, 450, 490), var = 9900, power = 0.8)
power.ancova(n = rep(96/3, 3), mu=c(410, 450, 490), var = 9900)
power.ancova(mu=c(410, 450, 490), var = 9900, power = 0.8, nr.covs = 10)
power.ancova(n = rep(105/3, 3), mu=c(410, 450, 490), var = 9900, nr.covs = 10)

Table 5 in Shieh (2020)
power.ancova(mu=c(410, 450, 490), var = 7500, power = 0.8)
power.ancova(n = rep(72/3, 3), mu=c(410, 450, 490), var = 7500)

https://doi.org/10.1007/s11336-019-09692-3

6 power.diagnostic.test

power.ancova(mu=c(410, 450, 490), var = 7500, power = 0.8, nr.covs = 10)
power.ancova(n = rep(84/3, 3), mu=c(410, 450, 490), var = 7500, nr.covs = 10)

Table 6 in Shieh (2020)
power.ancova(mu=c(410, 450, 490), var = 1900, power = 0.8)
power.ancova(n = rep(24/3, 3), mu=c(410, 450, 490), var = 1900)
power.ancova(mu=c(410, 450, 490), var = 1900, power = 0.8, nr.covs = 10)
power.ancova(n = rep(33/3, 3), mu=c(410, 450, 490), var = 1900, nr.covs = 10)

ANOVA approach for Table 4-6
power.anova.test(groups = 3, between.var = var(c(410, 450, 490)),

within.var = 10000, power = 0.8)
power.anova.test(n = 96/3, groups = 3, between.var = var(c(410, 450, 490)),

within.var = 10000)

###
Example from Maxwell and Delaney (2004) according to Shieh (2020)
###
ANCOVA (balanced design)
power.ancova(n = rep(30/3, 3), mu=c(7.5366, 11.9849, 13.9785), var = 29.0898)
power.ancova(mu=c(7.5366, 11.9849, 13.9785), var = 29.0898, power = 0.8)
power.ancova(mu=c(7.5366, 11.9849, 13.9785), var = 29.0898, power = 0.9)

ANOVA
power.anova.test(n = 30/3, groups = 3, between.var = var(c(7.5366, 11.9849, 13.9785)),

within.var = 29.0898)
power.anova.test(groups = 3, between.var = var(c(7.5366, 11.9849, 13.9785)),

within.var = 29.0898, power = 0.8)
power.anova.test(groups = 3, between.var = var(c(7.5366, 11.9849, 13.9785)),

within.var = 29.0898, power = 0.9)

ANCOVA - imbalanced design
power.ancova(mu=c(7.5366, 11.9849, 13.9785), var = 29.0898, power = 0.8,

group.ratio = c(1, 1.25, 1.5))
power.ancova(n = c(13, 16, 19), mu=c(7.5366, 11.9849, 13.9785), var = 29.0898,

group.ratio = c(1, 1.25, 1.5))
power.ancova(mu=c(7.5366, 11.9849, 13.9785), var = 29.0898, power = 0.8,

group.ratio = c(1, 0.8, 2/3))
power.ancova(n = c(17, 14, 12), mu=c(7.5366, 11.9849, 13.9785), var = 29.0898,

group.ratio = c(1, 0.8, 2/3))

power.diagnostic.test Power Calculations for Diagnostic Tests

Description

Compute sample size, power, delta, or significance level of a diagnostic test for an expected sensi-
titivy or specificity.

power.diagnostic.test 7

Usage

power.diagnostic.test(sens = NULL, spec = NULL,
n = NULL, delta = NULL, sig.level = 0.05,
power = NULL, prev = NULL,
method = c("exact", "asymptotic"),
NMAX = 1e4)

Arguments

sens Expected sensitivity; either sens or spec has to be specified.

spec Expected specificity; either sens or spec has to be specified.

n Number of cases if sens and number of controls if spec is given.

delta sens-delta resp. spec-delta is used as lower confidence limit

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

prev Expected prevalence, if NULL prevalence is ignored which means prev = 0.5 is
assumed.

method exact or asymptotic formula; default "exact".

NMAX Maximum sample size considered in case method = "exact".

Details

Either sens or spec has to be specified which leads to computations for either cases or controls.

Exactly one of the parameters n, delta, sig.level, and power must be passed as NULL, and that
parameter is determined from the others. Notice that sig.level has a non-NULL default so NULL
must be explicitly passed if you want to compute it.

The computations are based on the formulas given in the Appendix of Flahault et al. (2005). Please
be careful, in Equation (A1) the numerator should be squared, in equation (A2) and (A3) the second
exponent should be n-i and not i.

As noted in Chu and Cole (2007) power is not a monotonically increasing function in n but rather
saw toothed (see also Chernick and Liu (2002)). Hence, in our calculations we use the more con-
servative approach II); i.e., the minimum sample size n such that the actual power is larger or equal
power andsuch that for any sample size larger than n it also holds that the actual power is larger or
equal power.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

8 power.hsu.t.test

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

A. Flahault, M. Cadilhac, and G. Thomas (2005). Sample size calculation should be performed for
design accuracy in diagnostic test studies. Journal of Clinical Epidemiology, 58(8):859-862.

H. Chu and S.R. Cole (2007). Sample size calculation using exact methods in diagnostic test studies.
Journal of Clinical Epidemiology, 60(11):1201-1202.

M.R. Chernick amd C.Y. Liu (2002). The saw-toothed behavior of power versus sample size and
software solutions: single binomial proportion using exact methods. Am Stat, 56:149-155.

See Also

uniroot

Examples

see n2 on page 1202 of Chu and Cole (2007)
power.diagnostic.test(sens = 0.99, delta = 0.14, power = 0.95) # 40
power.diagnostic.test(sens = 0.99, delta = 0.13, power = 0.95) # 43
power.diagnostic.test(sens = 0.99, delta = 0.12, power = 0.95) # 47

power.diagnostic.test(sens = 0.98, delta = 0.13, power = 0.95) # 50
power.diagnostic.test(sens = 0.98, delta = 0.11, power = 0.95) # 58

see page 1201 of Chu and Cole (2007)
power.diagnostic.test(sens = 0.95, delta = 0.1, n = 93) ## 0.957
power.diagnostic.test(sens = 0.95, delta = 0.1, n = 93, power = 0.95,

sig.level = NULL) ## 0.0496
power.diagnostic.test(sens = 0.95, delta = 0.1, n = 102) ## 0.968
power.diagnostic.test(sens = 0.95, delta = 0.1, n = 102, power = 0.95,

sig.level = NULL) ## 0.0471
yields 102 not 93!
power.diagnostic.test(sens = 0.95, delta = 0.1, power = 0.95)

power.hsu.t.test Power Calculations for Two-sample Hsu t Test

Description

Compute the power of the two-sample Hsu t test, or determine parameters to obtain a target power;
see Section 7.4.4 in Hedderich and Sachs (2016).

Usage

power.hsu.t.test(n = NULL, delta = NULL, sd1 = 1, sd2 = 1, sig.level = 0.05,
power = NULL, alternative = c("two.sided", "one.sided"),
strict = FALSE, tol = .Machine$double.eps^0.25)

power.hsu.t.test 9

Arguments

n number of observations (per group)

delta (expected) true difference in means

sd1 (expected) standard deviation of group 1

sd2 (expected) standard deviation of group 2

sig.level significance level (Type I error probability)

power power of test (1 minus Type II error probability)

alternative one- or two-sided test. Can be abbreviated.

strict use strict interpretation in two-sided case

tol numerical tolerance used in root finding, the default providing (at least) four
significant digits.

Details

Exactly one of the parameters n, delta, power, sd1, sd2 and sig.level must be passed as NULL,
and that parameter is determined from the others. Notice that the last three have non-NULL defaults,
so NULL must be explicitly passed if you want to compute them.

If strict = TRUE is used, the power will include the probability of rejection in the opposite direction
of the true effect, in the two-sided case. Without this the power will be half the significance level if
the true difference is zero.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

The function and its documentation was adapted from power.t.test implemented by Peter Dal-
gaard and based on previous work by Claus Ekstroem.

uniroot is used to solve the power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

J. Hedderich, L. Sachs. Angewandte Statistik: Methodensammlung mit R. Springer 2016.

See Also

power.welch.t.test, power.t.test, t.test, uniroot

10 power.mpe.atleast.one

Examples

more conservative than classical or Welch t-test
power.hsu.t.test(n = 20, delta = 1)
power.hsu.t.test(power = .90, delta = 1)
power.hsu.t.test(power = .90, delta = 1, alternative = "one.sided")

sd1 = 0.5, sd2 = 1
power.welch.t.test(delta = 0.5, sd1 = 0.5, sd2 = 1, power = 0.9)
power.hsu.t.test(delta = 0.5, sd1 = 0.5, sd2 = 1, power = 0.9)

if(require(MKinfer)){
empirical check
M <- 10000
ps <- numeric(M)
for(i in seq_len(M)){
x <- rnorm(55, mean = 0, sd = 0.5)
y <- rnorm(55, mean = 0.5, sd = 1.0)
ps[i] <- hsu.t.test(x, y)$p.value

}
empirical power
sum(ps < 0.05)/M
}

power.mpe.atleast.one Power for at least One Endpoint with Known Covariance

Description

The function calculates either sample size or power for continuous multiple primary endpoints for
at least one endpoint with known covariance.

Usage

power.mpe.atleast.one(K, n = NULL, delta = NULL, Sigma, SD, rho, sig.level = 0.05/K,
power = NULL, n.max = 1e5, tol = .Machine$double.eps^0.25)

Arguments

K number of endpoints

n optional: sample size

delta expected effect size

Sigma A covariance of known matrix

SD known standard deviations (length K)

rho known correlations (length 0.5*K*(K-1))

sig.level Significance level (Type I error probability)

power.mpe.atleast.one 11

power optional: Power of test (1 minus Type II error probability)

n.max upper end of the interval to be search for n via uniroot.

tol The desired accuracy

Details

The function can be used to either compute sample size or power for continuous multiple primary
endpoints with known covariance where a significant difference for at least one endpoint is expected.
The implementation is based on the formulas given in the references below.

The null hypothesis reads µTk − µCk ≤ 0 for all k ∈ {1, . . . ,K} where Tk is treatment k, Ck is
control k and K is the number of co-primary endpoints.

One has to specify either n or power, the other parameter is determined. Moreover, either covariance
matrix Sigma or standard deviations SD and correlations rho must be given.

Value

Object of class power.mpe.test, a list of arguments (including the computed one) augmented with
method and note elements.

Note

The function first appeared in package mpe, which is now archived on CRAN.

Author(s)

Srinath Kolampally, Matthias Kohl <Matthias.Kohl@stamats.de>

References

Sugimoto, T. and Sozu, T. and Hamasaki, T. (2012). A convenient formula for sample size calcu-
lations in clinical trials with multiple co-primary continuous endpoints. Pharmaceut. Statist., 11:
118-128. doi:10.1002/pst.505

Sozu, T. and Sugimoto, T. and Hamasaki, T. and Evans, S.R. (2015). Sample Size Determination in
Clinical Trials with Multiple Endpoints. Springer Briefs in Statistics, ISBN 978-3-319-22005-5.

Examples

compute power
power.mpe.atleast.one(K = 2, delta = c(0.2,0.2), Sigma = diag(c(1,1)), power = 0.8)

compute sample size
power.mpe.atleast.one(K = 2, delta = c(0.2,0.2), Sigma = diag(c(2,2)), power = 0.9)

known covariance matrix
Sigma <- matrix(c(1.440, 0.840, 1.296, 0.840,

0.840, 1.960, 0.168, 1.568,
1.296, 0.168, 1.440, 0.420,
0.840, 1.568, 0.420, 1.960), ncol = 4)

compute power

12 power.mpe.known.var

power.mpe.atleast.one(K = 4, n = 60, delta = c(0.5, 0.75, 0.5, 0.75), Sigma = Sigma)
equivalent: known SDs and correlation rho
power.mpe.atleast.one(K = 4, n = 60, delta = c(0.5, 0.75, 0.5, 0.75),

SD = c(1.2, 1.4, 1.2, 1.4),
rho = c(0.5, 0.9, 0.5, 0.1, 0.8, 0.25))

power.mpe.known.var Multiple Co-Primary Endpoints with Known Covariance

Description

The function calculates either sample size or power for continuous multiple co-primary endpoints
with known covariance.

Usage

power.mpe.known.var(K, n = NULL, delta = NULL, Sigma, SD, rho,
sig.level = 0.05, power = NULL, n.max = 1e5, tol = .Machine$double.eps^0.25)

Arguments

K number of co-primary endpoints

n optional: sample size

delta expected effect size (length K)

Sigma known covariance matrix (dimension K x K)

SD known standard deviations (length K)

rho known correlations (length 0.5*K*(K-1))

sig.level significance level (Type I error probability)

power optional: power of test (1 minus Type II error probability)

n.max upper end of the interval to be search for n via uniroot.

tol the desired accuracy for uniroot.

Details

The function can be used to either compute sample size or power for continuous multiple co-primary
endpoints with known covariance where a multivariate normal distribution is assumed. The imple-
mentation is based on the formulas given in the references below.

The null hypothesis reads µTk −µCk ≤ 0 for at least one k ∈ {1, . . . ,K} where Tk is treatment k,
Ck is control k and K is the number of co-primary endpoints.

One has to specify either n or power, the other parameter is determined. Moreover, either covariance
matrix Sigma or standard deviations SD and correlations rho must be given.

Value

Object of class power.mpe.test, a list of arguments (including the computed one) augemented
with method and note elements.

power.mpe.unknown.var 13

Note

The function first appeared in package mpe, which is now archived on CRAN.

Author(s)

Srinath Kolampally, Matthias Kohl <Matthias.Kohl@stamats.de>

References

Sugimoto, T. and Sozu, T. and Hamasaki, T. (2012). A convenient formula for sample size calcu-
lations in clinical trials with multiple co-primary continuous endpoints. Pharmaceut. Statist., 11:
118-128. doi:10.1002/pst.505

Sozu, T. and Sugimoto, T. and Hamasaki, T. and Evans, S.R. (2015). Sample Size Determination in
Clinical Trials with Multiple Endpoints. Springer Briefs in Statistics, ISBN 978-3-319-22005-5.

See Also

power.mpe.unknown.var

Examples

compute power
power.mpe.known.var(K = 2, n = 20, delta = c(1,1), Sigma = diag(c(1,1)))

compute sample size
power.mpe.known.var(K = 2, delta = c(1,1), Sigma = diag(c(2,2)), power = 0.9,

sig.level = 0.025)

known covariance matrix
Sigma <- matrix(c(1.440, 0.840, 1.296, 0.840,

0.840, 1.960, 0.168, 1.568,
1.296, 0.168, 1.440, 0.420,
0.840, 1.568, 0.420, 1.960), ncol = 4)

compute power
power.mpe.known.var(K = 4, n = 60, delta = c(0.5, 0.75, 0.5, 0.75), Sigma = Sigma)
equivalent: known SDs and correlation rho
power.mpe.known.var(K = 4, n = 60,delta = c(0.5, 0.75, 0.5, 0.75),

SD = c(1.2, 1.4, 1.2, 1.4),
rho = c(0.5, 0.9, 0.5, 0.1, 0.8, 0.25))

power.mpe.unknown.var Multiple Co-Primary Endpoints with Unknown Covariance

Description

The function calculates either sample size or power for continuous multiple co-primary endpoints
with unknown covariance.

14 power.mpe.unknown.var

Usage

power.mpe.unknown.var(K, n = NULL, delta = NULL, Sigma, SD, rho, sig.level = 0.05,
power = NULL, M = 10000, n.min = NULL, n.max = NULL,
tol = .Machine$double.eps^0.25, use.uniroot = TRUE)

Arguments

K number of co-primary endpoints

n optional: sample size

delta expected effect size (length K)

Sigma unknown covariance matrix (dimension K x K)

SD unknown standard deviations (length K)

rho unknown correlations (length 0.5*K*(K-1))

sig.level significance level (Type I error probability)

power optional: power of test (1 minus Type II error probability)

M Number of replications for the required simulations.

n.min Starting point of search interval for sample size

n.max End point of search interval for sample size, must be larger than n.min

tol the desired accuracy for uniroot

use.uniroot Finds one root of one equation

Details

The function can be used to either compute sample size or power for continuous multiple co-primary
endpoints with unknown covariance. The implementation is based on the formulas given in the
references below.

The null hypothesis reads µTk −µCk ≤ 0 for at least one k ∈ {1, . . . ,K} where Tk is treatment k,
Ck is control k and K is the number of co-primary endpoints.

One has to specify either n or power, the other parameter is determined. An approach to calculate
sample size n, is to first call power.mpe.known.var and use the result as n.min. The input for
n.max must be larger then n.min. Moreover, either covariance matrix Sigma or standard deviations
SD and correlations rho must be given.

The sample size is calculated by simulating Wishart distributed random matrices, hence the results
include a certain random variation.

Value

Object of class power.mpe.test, a list of arguments (including the computed one) augmented with
method and note elements.

Note

The function first appeared in package mpe, which is now archived on CRAN.

power.nb.test 15

Author(s)

Srinath Kolampally, Matthias Kohl <Matthias.Kohl@stamats.de>

References

Sugimoto, T. and Sozu, T. and Hamasaki, T. (2012). A convenient formula for sample size calcu-
lations in clinical trials with multiple co-primary continuous endpoints. Pharmaceut. Statist., 11:
118-128. doi:10.1002/pst.505

Sozu, T. and Sugimoto, T. and Hamasaki, T. and Evans, S.R. (2015). Sample Size Determination in
Clinical Trials with Multiple Endpoints. Springer Briefs in Statistics, ISBN 978-3-319-22005-5.

See Also

power.mpe.known.var

Examples

compute power
Not run:
power.mpe.unknown.var(K = 2, n = 20, delta = c(1,1), Sigma = diag(c(1,1)))

To compute sample size, first assume covariance as known
power.mpe.known.var(K = 2, delta = c(1,1), Sigma = diag(c(2,2)), power = 0.9,

sig.level = 0.025)

The value of n, which is 51, is used as n.min and n.max must be larger
then n.min so we try 60.
power.mpe.unknown.var(K = 2, delta = c(1,1), Sigma = diag(c(2,2)), power = 0.9,

sig.level = 0.025, n.min = 51, n.max = 60)

More complex example with unknown covariance matrix assumed to be
Sigma <- matrix(c(1.440, 0.840, 1.296, 0.840,

0.840, 1.960, 0.168, 1.568,
1.296, 0.168, 1.440, 0.420,
0.840, 1.568, 0.420, 1.960), ncol = 4)

compute power
power.mpe.unknown.var(K = 4, n = 90, delta = c(0.5, 0.75, 0.5, 0.75), Sigma = Sigma)
equivalent: unknown SDs and correlation rho
power.mpe.unknown.var(K = 4, n = 90, delta = c(0.5, 0.75, 0.5, 0.75),

SD = c(1.2, 1.4, 1.2, 1.4),
rho = c(0.5, 0.9, 0.5, 0.1, 0.8, 0.25))

End(Not run)

power.nb.test Power Calculation for Comparing Two Negative Binomial Rates

16 power.nb.test

Description

Compute sample size or power for comparing two negative binomial rates.

Usage

power.nb.test(n = NULL, mu0, mu1, RR, duration = 1, theta, ssize.ratio = 1,
sig.level = 0.05, power = NULL, alternative = c("two.sided", "one.sided"),

approach = 3)

Arguments

n Sample size for group 0 (control group).

mu0 expected rate of events per time unit for group 0

mu1 expected rate of events per time unit for group 1

RR ratio of expected event rates: mu1/mu0

duration (average) treatment duration

theta theta parameter of negative binomial distribution; see rnegbin

ssize.ratio ratio of sample sizes: n1/n where n1 is sample size of group 1

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

alternative one- or two-sided test

approach 1, 2, or 3; see Zhu and Lakkis (2014).

Details

Exactly one of the parameters n and power must be passed as NULL, and that parameter is determined
from the other.

The computations are based on the formulas given in Zhu and Lakkis (2014). Please be careful, as
we are using a slightly different parametrization (theta = 1/k).

Zhu and Lakkis (2014) based on their simulation studies recommend to use their approach 2 or 3.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with a note element.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

H. Zhu and H. Lakkis (2014). Sample size calculation for comparing two negative binomial rates.
Statistics in Medicine, 33:376-387.

power.nb.test 17

See Also

rnegbin, glm.nb

Examples

examples from Table I in Zhu and Lakkis (2014)
theta = 1/k, RR = rr, mu0 = r0, duration = mu_t
power.nb.test(mu0 = 0.8, RR = 0.85, theta = 1/0.4, duration = 0.75, power = 0.8, approach = 1)
power.nb.test(mu0 = 0.8, RR = 0.85, theta = 1/0.4, duration = 0.75, power = 0.8, approach = 2)
power.nb.test(mu0 = 0.8, RR = 0.85, theta = 1/0.4, duration = 0.75, power = 0.8, approach = 3)

power.nb.test(mu0 = 1.4, RR = 1.15, theta = 1/1.5, duration = 0.75, power = 0.8, approach = 1)
power.nb.test(mu0 = 1.4, RR = 1.15, theta = 1/1.5, duration = 0.75, power = 0.8, approach = 2)
power.nb.test(mu0 = 1.4, RR = 1.15, theta = 1/1.5, duration = 0.75, power = 0.8, approach = 3)

examples from Table II in Zhu and Lakkis (2014) - seem to be total sample sizes
can reproduce the results with mu_t = 1.0 (not 0.7!)
power.nb.test(mu0 = 2.0, RR = 0.5, theta = 1, duration = 1.0, ssize.ratio = 1,

power = 0.8, approach = 1)
power.nb.test(mu0 = 2.0, RR = 0.5, theta = 1, duration = 1.0, ssize.ratio = 1,

power = 0.8, approach = 2)
power.nb.test(mu0 = 2.0, RR = 0.5, theta = 1, duration = 1.0, ssize.ratio = 1,

power = 0.8, approach = 3)

power.nb.test(mu0 = 10.0, RR = 1.5, theta = 1/5, duration = 1.0, ssize.ratio = 3/2,
power = 0.8, approach = 1)

power.nb.test(mu0 = 10.0, RR = 1.5, theta = 1/5, duration = 1.0, ssize.ratio = 3/2,
power = 0.8, approach = 2)

power.nb.test(mu0 = 10.0, RR = 1.5, theta = 1/5, duration = 1.0, ssize.ratio = 3/2,
power = 0.8, approach = 3)

examples from Table III in Zhu and Lakkis (2014)
power.nb.test(mu0 = 5.0, RR = 2.0, theta = 1/0.5, duration = 1, power = 0.8, approach = 1)
power.nb.test(mu0 = 5.0, RR = 2.0, theta = 1/0.5, duration = 1, power = 0.8, approach = 2)
power.nb.test(mu0 = 5.0, RR = 2.0, theta = 1/0.5, duration = 1, power = 0.8, approach = 3)

examples from Table IV in Zhu and Lakkis (2014)
power.nb.test(mu0 = 5.9/3, RR = 0.4, theta = 0.49, duration = 3, power = 0.9, approach = 1)
power.nb.test(mu0 = 5.9/3, RR = 0.4, theta = 0.49, duration = 3, power = 0.9, approach = 2)
power.nb.test(mu0 = 5.9/3, RR = 0.4, theta = 0.49, duration = 3, power = 0.9, approach = 3)

power.nb.test(mu0 = 13/6, RR = 0.2, theta = 0.52, duration = 6, power = 0.9, approach = 1)
power.nb.test(mu0 = 13/6, RR = 0.2, theta = 0.52, duration = 6, power = 0.9, approach = 2)
power.nb.test(mu0 = 13/6, RR = 0.2, theta = 0.52, duration = 6, power = 0.9, approach = 3)

see Section 5 of Zhu and Lakkis (2014)
power.nb.test(mu0 = 0.66, RR = 0.8, theta = 1/0.8, duration = 0.9, power = 0.9)

18 power.prop1.test

power.prop1.test Power Calculations for One-Sample Test for Proportions

Description

Compute the power of the one-sample test for proportions, or determine parameters to obtain a
target power.

Usage

power.prop1.test(n = NULL, p1 = NULL, p0 = 0.5, sig.level = 0.05,
power = NULL,
alternative = c("two.sided", "less", "greater"),
cont.corr = TRUE, tol = .Machine$double.eps^0.25)

Arguments

n number of observations (per group)

p1 expected probability

p0 probability under the null hypothesis

sig.level significance level (Type I error probability)

power power of test (1 minus Type II error probability)

alternative one- or two-sided test. Can be abbreviated.

cont.corr use continuity correction

tol numerical tolerance used in root finding, the default providing (at least) four
significant digits.

Details

Exactly one of the parameters n, p1, power, and sig.level must be passed as NULL, and that
parameter is determined from the others. Notice that sig.level has a non-NULL default so NULL
must be explicitly passed if you want it computed.

The computation is based on the asymptotic formulas provided in Section 2.5.1 of Fleiss et al.
(2003). If cont.corr = TRUE a continuity correction is applied, which may lead to better approxi-
mations of the finite-sample values.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

The documentation was adapted from power.prop.test.

power.welch.t.test 19

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

J.L. Fleiss, B. Levin and M.C. Paik (2003). Statistical Methods for Rates and Proportions. Wiley
Series in Probability and Statistics.

See Also

power.prop.test, prop.test

Examples

power.prop1.test(p1 = 0.4, power = 0.8)
power.prop1.test(p1 = 0.4, power = 0.8, cont.corr = FALSE)
power.prop1.test(p1 = 0.6, power = 0.8)
power.prop1.test(n = 204, power = 0.8)
power.prop1.test(n = 204, p1 = 0.4, power = 0.8, sig.level = NULL)
power.prop1.test(n = 194, p1 = 0.4, power = 0.8, sig.level = NULL,

cont.corr = FALSE)

power.prop1.test(p1 = 0.1, p0 = 0.3, power = 0.8, alternative = "less")
power.prop1.test(p1 = 0.1, p0 = 0.3, power = 0.8, alternative = "less",

cont.corr = FALSE)
power.prop1.test(n = 31, p0 = 0.3, power = 0.8, alternative = "less")
power.prop1.test(n = 31, p1 = 0.1, p0 = 0.3, power = 0.8, sig.level = NULL,

alternative = "less")

power.prop1.test(p1 = 0.5, p0 = 0.3, power = 0.8, alternative = "greater")
power.prop1.test(p1 = 0.5, p0 = 0.3, power = 0.8, alternative = "greater",

cont.corr = FALSE)
power.prop1.test(n = 40, p0 = 0.3, power = 0.8, alternative = "greater")
power.prop1.test(n = 40, p1 = 0.5, p0 = 0.3, power = 0.8, sig.level = NULL,

alternative = "greater")

power.welch.t.test Power Calculations for Two-sample Welch t Test

Description

Compute the power of the two-sample Welch t test, or determine parameters to obtain a target
power.

Usage

power.welch.t.test(n = NULL, delta = NULL, sd1 = 1, sd2 = 1, sig.level = 0.05,
power = NULL, alternative = c("two.sided", "one.sided"),
strict = FALSE, tol = .Machine$double.eps^0.25)

20 power.welch.t.test

Arguments

n number of observations (per group)

delta (expected) true difference in means

sd1 (expected) standard deviation of group 1

sd2 (expected) standard deviation of group 2

sig.level significance level (Type I error probability)

power power of test (1 minus Type II error probability)

alternative one- or two-sided test. Can be abbreviated.

strict use strict interpretation in two-sided case

tol numerical tolerance used in root finding, the default providing (at least) four
significant digits.

Details

Exactly one of the parameters n, delta, power, sd1, sd2 and sig.level must be passed as NULL,
and that parameter is determined from the others. Notice that the last three have non-NULL defaults,
so NULL must be explicitly passed if you want to compute them.

If strict = TRUE is used, the power will include the probability of rejection in the opposite direction
of the true effect, in the two-sided case. Without this the power will be half the significance level if
the true difference is zero.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

The function and its documentation was adapted from power.t.test implemented by Peter Dal-
gaard and based on previous work by Claus Ekstroem.

uniroot is used to solve the power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

S.L. Jan and G. Shieh (2011). Optimal sample sizes for Welch’s test under various allocation and
cost considerations. Behav Res Methods, 43, 4:1014-22.

See Also

power.t.test, t.test, uniroot

print.power.mpe.test 21

Examples

identical results as power.t.test, since sd = sd1 = sd2 = 1
power.welch.t.test(n = 20, delta = 1)
power.welch.t.test(power = .90, delta = 1)
power.welch.t.test(power = .90, delta = 1, alternative = "one.sided")

sd1 = 0.5, sd2 = 1
power.welch.t.test(delta = 2, sd1 = 0.5, sd2 = 1, power = 0.9)

empirical check
M <- 10000
pvals.welch <- numeric(M)
for(i in seq_len(M)){
x <- rnorm(5, mean = 0, sd = 0.5)
y <- rnorm(5, mean = 2, sd = 1.0)
pvals.welch[i] <- t.test(x, y)$p.value

}
empirical power
sum(pvals.welch < 0.05)/M

print.power.mpe.test Print Methods for Hypothesis Tests, Sample size and Power Calcula-
tions

Description

Printing objects of class "power.mpe.test" by simple print methods.

Usage

S3 method for class 'power.mpe.test'
print(x, digits = getOption("digits"), ...)

Arguments

x object of class "power.mpe.test".

digits number of significant digits to be used.

... further arguments to be passed to or from methods.

Details

The print method is based on the respective method print.power.htest of package stats.

A power.mpe.test object is just a named list of numbers and character strings, supplemented with
method and note elements. The method is displayed as a title, the note as a footnote, and the
remaining elements are given in an aligned ‘name = value’ format.

22 qqunif

Value

the argument x, invisibly, as for all print methods.

Note

The function first appeared in package mpe, which is now archived on CRAN.

Author(s)

Srinath Kolampally, Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

print.power.htest, power.mpe.known.var, power.mpe.unknown.var

Examples

(pkv <- power.mpe.known.var(K = 2, delta = c(1,1), Sigma = diag(c(2,2)), power = 0.9,
sig.level = 0.025))

print(pkv, digits = 4) # using less digits than default
print(pkv, digits = 12) # using more digits than default

qqunif qq-Plots for Uniform Distribution

Description

Produce qq-plot(s) of the given effect size and p values assuming a uniform distribution.

Usage

qqunif(x, ...)

Default S3 method:
qqunif(x, min = 0, max = 1, ...)

S3 method for class 'sim.power.ttest'
qqunif(x, color.line = "orange", shape = 19, size = 1,

alpha = 1, ...)

S3 method for class 'sim.power.wtest'
qqunif(x, color.line = "orange", shape = 19, size = 1,

alpha = 1, ...)

qqunif 23

Arguments

x numeric vector or data (object).

min single numeric, lower limit of the distribution.

max single numeric, upper limit of the distribution.

color.line color of the line indicating the uniform distribution.

shape point shape.

size point size.

alpha bleding factor (default: no blending.

... further arguments that may be passed through).

Details

The plot generates a ggplot2 object that is shown.

Missing values are handled by the ggplot2 functions.

Value

Object of class gg and ggplot.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

Examples

default
qqunif(runif(100))

visualization of empirical power and type-I-error
res1 <- sim.power.t.test(nx = 5, rx = rnorm, rx.H0 = rnorm,

ny = 10, ry = function(x) rnorm(x, mean = 3, sd = 3),
ry.H0 = function(x) rnorm(x, sd = 3))

qqunif(res1, alpha = 0.1)

res2 <- sim.power.wilcox.test(nx = 6, rx = rnorm, rx.H0 = rnorm,
ny = 6, ry = function(x) rnorm(x, mean = 2),
ry.H0 = rnorm)

qqunif(res2)

24 sim.power.t.test

sim.power.t.test Monte Carlo Simulations for Empirical Power of Two-sample t-Tests

Description

Simulate the empirical power and type-I-error of two-sample t-tests; i.e., classical (equal variances),
Welch and Hsu t-tests.

Usage

sim.power.t.test(nx, rx, rx.H0 = NULL, ny, ry, ry.H0 = NULL,
sig.level = 0.05, conf.int = FALSE, mu = 0,
alternative = c("two.sided", "less", "greater"),
iter = 10000)

Arguments

nx single numeric, sample size of first group.

rx function to simulate the values of first group (assuming H1).

rx.H0 NULL or function to simulate the values of first group (assuming H0).

ny single numeric, sample size of second group.

ry function to simulate the values of second group (assuming H1).

ry.H0 NULL or function to simulate the values of second group (assuming H0).

sig.level significance level (type I error probability)

conf.int logical, shall confidence intervals be computed. Increases computation time!

mu true value of the location shift for the null hypothesis.

alternative one- or two-sided test. Can be abbreviated.

iter single integer, number of interations of the simulations.

Details

Functions rx and ry are used to simulate the data under the alternative hypothesis H1. If specified,
functions rx.H0 and ry.H0 simulte the data unter the null hypothesis H0.

For fast computations functions from package matrixTests are used.

Value

Object of class "sim.power.ttest" with the results of the three t-tests in the list elements Classical,
Welch and Hsu. In addition, the simulation setup is saved in element SetUp.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

sim.power.t.test 25

References

J. Hedderich, L. Sachs. Angewandte Statistik: Methodensammlung mit R. Springer 2018.

Hsu, P. (1938). Contribution to the theory of “student’s” t-test as applied to the problem of two
samples. Statistical Research Memoirs 2: 1-24.

Student (1908). The Probable Error of a Mean. Biometrika, 6(1): 1-25.

Welch, B. L. (1947). The generalization of “Student’s” problem when several different population
variances are involved. Biometrika, 34 (1-2): 28-35.

See Also

t.test, hsu.t.test, ttest

Examples

Equal variance, small sample size
power.t.test(n = 5, delta = 2)
power.welch.t.test(n = 5, delta = 2)
power.hsu.t.test(n = 5, delta = 2)
sim.power.t.test(nx = 5, rx = rnorm, rx.H0 = rnorm,

ny = 5, ry = function(x) rnorm(x, mean = 2), ry.H0 = rnorm)

Equal variance, moderate sample size
power.t.test(n = 25, delta = 0.8)
power.welch.t.test(n = 25, delta = 0.8)
power.hsu.t.test(n = 25, delta = 0.8)
sim.power.t.test(nx = 25, rx = rnorm, rx.H0 = rnorm,

ny = 25, ry = function(x) rnorm(x, mean = 0.8), ry.H0 = rnorm)

Equal variance, high sample size
power.t.test(n = 100, delta = 0.4)
power.welch.t.test(n = 100, delta = 0.4)
power.hsu.t.test(n = 100, delta = 0.4)
sim.power.t.test(nx = 100, rx = rnorm, rx.H0 = rnorm,

ny = 100, ry = function(x) rnorm(x, mean = 0.4), ry.H0 = rnorm)

Unequal variance, small sample size
power.welch.t.test(n = 5, delta = 5, sd1 = 1, sd2 = 3)
power.hsu.t.test(n = 5, delta = 5, sd1 = 1, sd2 = 3)
sim.power.t.test(nx = 5, rx = rnorm, rx.H0 = rnorm,

ny = 5, ry = function(x) rnorm(x, mean = 5, sd = 3),
ry.H0 = function(x) rnorm(x, sd = 3))

Unequal variance, moderate sample size
power.welch.t.test(n = 25, delta = 1.8, sd1 = 1, sd2 = 3)
power.hsu.t.test(n = 25, delta = 1.8, sd1 = 1, sd2 = 3)
sim.power.t.test(nx = 25, rx = rnorm, rx.H0 = rnorm,

ny = 25, ry = function(x) rnorm(x, mean = 1.8, sd = 3),
ry.H0 = function(x) rnorm(x, sd = 3))

Unequal variance, high sample size

26 sim.power.wilcox.test

power.welch.t.test(n = 100, delta = 0.9, sd1 = 1, sd2 = 3)
power.hsu.t.test(n = 100, delta = 0.9, sd1 = 1, sd2 = 3)
sim.power.t.test(nx = 100, rx = rnorm, rx.H0 = rnorm,

ny = 100, ry = function(x) rnorm(x, mean = 0.9, sd = 3),
ry.H0 = function(x) rnorm(x, sd = 3))

Unequal variance, unequal sample sizes
small sample sizes
sim.power.t.test(nx = 10, rx = rnorm, rx.H0 = rnorm,

ny = 5, ry = function(x) rnorm(x, mean = 5, sd = 3),
ry.H0 = function(x) rnorm(x, sd = 3))

sim.power.t.test(nx = 5, rx = rnorm, rx.H0 = rnorm,
ny = 10, ry = function(x) rnorm(x, mean = 3, sd = 3),
ry.H0 = function(x) rnorm(x, sd = 3))

Unequal variance, unequal sample sizes
moderate sample sizes
sim.power.t.test(nx = 25, rx = rnorm, rx.H0 = rnorm,

ny = 50, ry = function(x) rnorm(x, mean = 1.5, sd = 3),
ry.H0 = function(x) rnorm(x, sd = 3))

Unequal variance, unequal sample sizes
high sample sizes
sim.power.t.test(nx = 100, rx = rnorm, rx.H0 = rnorm,

ny = 200, ry = function(x) rnorm(x, mean = 0.6, sd = 3),
ry.H0 = function(x) rnorm(x, sd = 3))

sim.power.wilcox.test Monte Carlo Simulations for Empirical Power of Wilcoxon-Mann-
Whitney Tests

Description

Simulate the empirical power and type-I-error of Wilcoxon-Mann-Whitney tests.

Usage

sim.power.wilcox.test(nx, rx, rx.H0 = NULL, ny, ry, ry.H0 = NULL,
alternative = c("two.sided", "less", "greater"),
sig.level = 0.05, conf.int = FALSE, approximate = FALSE,
ties = FALSE, iter = 10000, nresample = 10000,
parallel = "no", ncpus = 1L, cl = NULL)

Arguments

nx single numeric, sample size of first group.

rx function to simulate the values of first group (assuming H1).

rx.H0 NULL or function to simulate the values of first group (assuming H0).

sim.power.wilcox.test 27

ny single numeric, sample size of second group.

ry function to simulate the values of second group (assuming H1).

ry.H0 NULL or function to simulate the values of second group (assuming H0).

alternative one- or two-sided test. Can be abbreviated.

sig.level significance level (type I error probability)

conf.int logical, shall confidence intervals be computed. Strongly increases computation
time!

approximate logical, shall an approximate test be computed; see LocationTests. Increases
computation time!

ties logical, indicating whether ties may occur. Increases computation time!

iter single positive integer, number of interations of the simulations.

nresample single positive integer, the number of Monte Carlo replicates used for the com-
putation of the approximative reference distribution; see NullDistribution.

parallel a character, the type of parallel operation: either "no" (default), "multicore"
or "snow"; see NullDistribution.

ncpus a single integer, the number of processes to be used in parallel operation. De-
faults to 1L; see NullDistribution.

cl an object inheriting from class "cluster", specifying an optional parallel or
snow cluster if parallel = "snow". Defaults to NULL; see NullDistribution.

Details

Functions rx and ry are used to simulate the data under the alternative hypothesis H1. If specified,
functions rx.H0 and ry.H0 simulte the data unter the null hypothesis H0.

For fast computations functions from package matrixTests and package coin are used.

Value

Object of class "sim.power.wtest" with the results of the Wilcoxon-Mann-Whitney tests. A list
elements Exact, Asymptotic and Approximate. In addition, the simulation setup is saved in ele-
ment SetUp.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Mann, H and Withney, D (1947). On a test of whether one of two random variables is stochastically
larger than the other. Annals of mathematical Statistics, 18, 50-60.

Wilcoxon, F (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1, 80-83.

See Also

wilcox.test, LocationTests, wilcoxon

28 sim.ssize.wilcox.test

Examples

Equal variance, small sample size
power.t.test(n = 5, power = 0.8)
sim.ssize.wilcox.test(rx = rnorm, ry = function(x) rnorm(x, mean = 2),

power = 0.8, n.min = 3, n.max = 10, step.size = 1)
sim.power.wilcox.test(nx = 6, rx = rnorm, rx.H0 = rnorm,

ny = 6, ry = function(x) rnorm(x, mean = 2),
ry.H0 = rnorm)

sim.ssize.wilcox.test Sample Size for Wilcoxon Rank Sum and Signed Rank Tests

Description

Simulate the empirical power of Wilcoxon rank sum and signed rank tests for computing the re-
quired sample size.

Usage

sim.ssize.wilcox.test(rx, ry = NULL, mu = 0, sig.level = 0.05, power = 0.8,
type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "less", "greater"),
n.min = 10, n.max = 200, step.size = 10,
iter = 10000, BREAK = TRUE, exact = NA, correct = TRUE)

Arguments

rx function to simulate the values of x, respectively x-y in the paired case.
ry function to simulate the values of y in the two-sample case
mu true values of the location shift for the null hypothesis.
sig.level significance level (Type I error probability)
power two-sample, one-sample or paired test
type one- or two-sided test. Can be abbreviated.
alternative one- or two-sided test. Can be abbreviated.
n.min integer, start value of grid search.
n.max integer, stop value of grid search.
step.size integer, step size used in the grid search.
iter integer, number of interations of the simulations.
BREAK logical, grid search stops when the emperical power is larger than the requested

power.
exact logical or NA (default) indicator whether an exact p-value should be computed

(see Details at wilcoxon). A single value or a logical vector with values for
each observation.

correct ogical indicator whether continuity correction should be applied in the cases
where p-values are obtained using normal approximation. A single value or
logical vector with values for each observation; see wilcoxon.

sim.ssize.wilcox.test 29

Details

Functions rx and ry are used to simulate the data and functions row_wilcoxon_twosample and
row_wilcoxon_onesample of package matrixTests are used to efficiently compute the p values of
the respective test.

We recommend a two steps procedure: In the first step, start with a wide grid and find out in which
range of sample size values the intended power will be achieved. In the second step, the interval
identified in the first step is used to find the sample size that leads to the required power setting
step.size = 1 and BREAK = FALSE. This approach is applied in the examples below.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Wilcoxon, F (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1, 80-83.

See Also

wilcox.test, wilcoxon

Examples

###
two-sample
iter = 1000 to reduce check time
###
rx <- function(n) rnorm(n, mean = 0, sd = 1)
ry <- function(n) rnorm(n, mean = 0.5, sd = 1)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.max = 100, iter = 1000)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.min = 65, n.max = 70, step.size = 1,

iter = 1000, BREAK = FALSE)
compared to
power.t.test(delta = 0.5, power = 0.8)

rx <- function(n) rnorm(n, mean = 0, sd = 1)
ry <- function(n) rnorm(n, mean = 0.5, sd = 1.5)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.max = 100, iter = 1000, alternative = "less")
sim.ssize.wilcox.test(rx = rx, ry = ry, n.min = 85, n.max = 90, step.size = 1,

iter = 1000, BREAK = FALSE, alternative = "less")
compared to
power.welch.t.test(delta = 0.5, sd = 1, sd2 = 1.5, power = 0.8, alternative = "one.sided")

rx <- function(n) rnorm(n, mean = 0.5, sd = 1)
ry <- function(n) rnorm(n, mean = 0, sd = 1)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.max = 100, iter = 1000, alternative = "greater")

30 sim.ssize.wilcox.test

sim.ssize.wilcox.test(rx = rx, ry = ry, n.min = 50, n.max = 55, step.size = 1,
iter = 1000, BREAK = FALSE, alternative = "greater")

compared to
power.t.test(delta = 0.5, power = 0.8, alternative = "one.sided")

rx <- function(n) rgamma(n, scale = 10, shape = 1)
ry <- function(n) rgamma(n, scale = 15, shape = 1)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.max = 200, iter = 1000)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.min = 125, n.max = 135, step.size = 1,

iter = 1000, BREAK = FALSE)

###
one-sample
iter = 1000 to reduce check time
###
rx <- function(n) rnorm(n, mean = 0.5, sd = 1)
sim.ssize.wilcox.test(rx = rx, mu = 0, type = "one.sample", n.max = 100, iter = 1000)
sim.ssize.wilcox.test(rx = rx, mu = 0, type = "one.sample", n.min = 33, n.max = 38,

step.size = 1, iter = 1000, BREAK = FALSE)
compared to
power.t.test(delta = 0.5, power = 0.8, type = "one.sample")

sim.ssize.wilcox.test(rx = rx, mu = 0, type = "one.sample", n.max = 100, iter = 1000,
alternative = "greater")

sim.ssize.wilcox.test(rx = rx, mu = 0, type = "one.sample", n.min = 25, n.max = 30,
step.size = 1, iter = 1000, BREAK = FALSE, alternative = "greater")

compared to
power.t.test(delta = 0.5, power = 0.8, type = "one.sample", alternative = "one.sided")

sim.ssize.wilcox.test(rx = rx, mu = 1, type = "one.sample", n.max = 100, iter = 1000,
alternative = "less")

sim.ssize.wilcox.test(rx = rx, mu = 1, type = "one.sample", n.min = 20, n.max = 30,
step.size = 1, iter = 1000, BREAK = FALSE, alternative = "less")

compared to
power.t.test(delta = 0.5, power = 0.8, type = "one.sample", alternative = "one.sided")

rx <- function(n) rgamma(n, scale = 10, shape = 1)
sim.ssize.wilcox.test(rx = rx, mu = 5, type = "one.sample", n.max = 200, iter = 1000)
sim.ssize.wilcox.test(rx = rx, mu = 5, type = "one.sample", n.min = 40, n.max = 50,

step.size = 1, iter = 1000, BREAK = FALSE)

###
paired
identical to one-sample, requires random number generating function
that simulates the difference x-y
iter = 1000 to reduce check time
###
rxy <- function(n) rnorm(n, mean = 0.5, sd = 1)
sim.ssize.wilcox.test(rx = rxy, mu = 0, type = "paired", n.max = 100,

iter = 1000)
sim.ssize.wilcox.test(rx = rxy, mu = 0, type = "paired", n.min = 33,

n.max = 38, step.size = 1, iter = 1000, BREAK = FALSE)
compared to

ssize.pcc 31

power.t.test(delta = 0.5, power = 0.8, type = "paired")

ssize.pcc Sample Size Planning for Developing Classifiers Using High Dimen-
sional Data

Description

Calculate sample size for training set in developing classifiers using high dimensional data. The
calculation is based on the probability of correct classification (PCC).

Usage

ssize.pcc(gamma, stdFC, prev = 0.5, nrFeatures, sigFeatures = 20, verbose = FALSE)

Arguments

gamma tolerance between PCC(infty) and PCC(n).

stdFC expected standardized fold-change; that is, expected fold-change devided by
within class standard deviation.

prev expected prevalence.

nrFeatures number of features (variables) considered.

sigFeatures number of significatn features; default (20) should be sufficient for most if not
all cases.

verbose print intermediate results.

Details

The computations are based the algorithm provided in Section~4.2 of Dobbin and Simon (2007).
Prevalence is incorporated by the simple rough approach given in Section~4.4 (ibid.).

The results for prevalence equal to $50%$ are identical to the numbers computed by https://brb.
nci.nih.gov/brb/samplesize/samplesize4GE.html. For other prevalences the numbers differ
and are larger for our implementation.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

optimize is used to solve equation (4.3) of Dobbin and Simon (2007), so you may see errors from
it.

https://brb.nci.nih.gov/brb/samplesize/samplesize4GE.html
https://brb.nci.nih.gov/brb/samplesize/samplesize4GE.html

32 ssize.propCI

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

K. Dobbin and R. Simon (2007). Sample size planning for developing classifiers using high-
dimensional DNA microarray data. Biostatistics, 8(1):101-117.

K. Dobbin, Y. Zhao, R. Simon (2008). How Large a Training Set is Needed to Develop a Classifier
for Microarray Data? Clin Cancer Res., 14(1):108-114.

See Also

optimize

Examples

see Table 2 of Dobbin et al. (2008)
g <- 0.1
fc <- 1.6
ssize.pcc(gamma = g, stdFC = fc, nrFeatures = 22000)

see Table 3 of Dobbin et al. (2008)
g <- 0.05
fc <- 1.1
ssize.pcc(gamma = g, stdFC = fc, nrFeatures = 22000)

ssize.propCI Sample Size Calculation for Confidence Interval of a Proportion

Description

Compute the sample size for the two-sided confidence interval of a single proportion.

Usage

ssize.propCI(prop, width, conf.level = 0.95, method = "wald-cc")

Arguments

prop expected proportion

width width of the confidence interval

conf.level confidence level

method method used to compute the confidence interval; see Details.

ssize.reference.range 33

Details

The computation is based on the asymptotic formulas provided in Section 2.5.2 of Fleiss et al.
(2003). If method = "wald-cc" a continuity correction is applied.

There are also methods for Jeffreys, Clopper-Pearson, Wilson and the Agresti-Coull interval; see
also binomCI.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

J.L. Fleiss, B. Levin and M.C. Paik (2003). Statistical Methods for Rates and Proportions. Wiley
Series in Probability and Statistics.

W.W. Piegorsch (2004). Sample sizes for improved binomial confidence intervals. Computational
Statistics & Data Analysis, 46, 309-316.

M. Thulin (2014). The cost of using exact confidence intervals for a binomial proportion. Electronic
Journal of Statistics, 8(1), 817-840.

See Also

power.prop1.test, binomCI

Examples

ssize.propCI(prop = 0.1, width = 0.1)
ssize.propCI(prop = 0.3, width = 0.1)
ssize.propCI(prop = 0.3, width = 0.1, method = "wald")
ssize.propCI(prop = 0.3, width = 0.1, method = "jeffreys")
ssize.propCI(prop = 0.3, width = 0.1, method = "clopper-pearson")
ssize.propCI(prop = 0.3, width = 0.1, method = "wilson")
ssize.propCI(prop = 0.3, width = 0.1, method = "agresti-coull")

ssize.reference.range Power Calculations for Two-sample Hsu t Test

Description

Compute the sample size for reference range studies, or determine parameters for a given sample
size; see Jennen-Steinmetz and Wellek (2005).

34 ssize.reference.range

Usage

ssize.reference.range(n = NULL, delta = NULL, ref.prob = 0.95, conf.prob = NULL,
alternative = c("two.sided", "one.sided"),
method = "parametric", exact = TRUE,
tol = .Machine$double.eps^0.5)

Arguments

n number of observations

delta difference between empirical and target coverage of reference range

ref.prob target coverage of reference range

conf.prob confidence probability to acchieve given difference between empirical and target
coverage

alternative a character string specifying "two.sided" (default), or one-sided reference ranges.
You can specify just the initial letter.

method either "parametric" or "nonparametric"; see details

exact use exact or approximate method

tol numerical tolerance used in root finding, the default providing (at least) eight
significant digits.

Details

Exactly one of the parameters n, delta, ref.prob and conf.prob must be passed as NULL, and that
parameter is determined from the others. In case of ref.prob NULL must be explicitly passed if you
want to compute it.

If method "parametric" a normal distribution is assumed for the investigated quantity.

If method "nonparametric" an arbitrary continuous probability distribution is assumed.

If exact = TRUE is used, the computations use the exact formulas (5) and (9) of Jennen-Steinmetz
and Wellek (2005).

If exact = FALSE is used, the computations use the approximate formulas (6) and (10) of Jennen-
Steinmetz and Wellek (2005).

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

uniroot is used to solve the equations for unknowns, so you may see errors from it, notably about
inability to bracket the root when invalid arguments are given.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

ssize.reference.range 35

References

C. Jennen-Steinmetz, S. Wellek (2005). A new approach to sample size calculation for reference
interval studies. Statistics in Medicine 24:3199-3212.

See Also

uniroot

Examples

see Table 1 in Jennen-Steinmetz and Wellek (2005)
ssize.reference.range(delta = 0.03, ref.prob = 0.9, conf.prob = 0.9,

method = "parametric", exact = TRUE)
135 vs 125 (error in Table 1)
ssize.reference.range(delta = 0.03, ref.prob = 0.9, conf.prob = 0.9,

method = "nonparametric", exact = TRUE)
ssize.reference.range(delta = 0.03, ref.prob = 0.9, conf.prob = 0.9,

method = "parametric", exact = FALSE)
ssize.reference.range(delta = 0.03, ref.prob = 0.9, conf.prob = 0.9,

method = "nonparametric", exact = FALSE)

ssize.reference.range(delta = 0.025, ref.prob = 0.9, conf.prob = 0.9,
method = "parametric", exact = TRUE)

ssize.reference.range(delta = 0.025, ref.prob = 0.9, conf.prob = 0.9,
method = "nonparametric", exact = TRUE)

ssize.reference.range(delta = 0.025, ref.prob = 0.9, conf.prob = 0.9,
method = "parametric", exact = FALSE)

ssize.reference.range(delta = 0.025, ref.prob = 0.9, conf.prob = 0.9,
method = "nonparametric", exact = FALSE)

ssize.reference.range(delta = 0.02, ref.prob = 0.9, conf.prob = 0.9,
method = "parametric", exact = TRUE)

314 vs. 305 (error Table 1?)
ssize.reference.range(delta = 0.02, ref.prob = 0.9, conf.prob = 0.9,

method = "nonparametric", exact = TRUE)
ssize.reference.range(delta = 0.02, ref.prob = 0.9, conf.prob = 0.9,

method = "parametric", exact = FALSE)
ssize.reference.range(delta = 0.02, ref.prob = 0.9, conf.prob = 0.9,

method = "nonparametric", exact = FALSE)

ssize.reference.range(delta = 0.015, ref.prob = 0.9, conf.prob = 0.9,
method = "parametric", exact = TRUE)

ssize.reference.range(delta = 0.015, ref.prob = 0.9, conf.prob = 0.9,
method = "nonparametric", exact = TRUE)

ssize.reference.range(delta = 0.015, ref.prob = 0.9, conf.prob = 0.9,
method = "parametric", exact = FALSE)

ssize.reference.range(delta = 0.015, ref.prob = 0.9, conf.prob = 0.9,
method = "nonparametric", exact = FALSE)

ssize.reference.range(delta = 0.01, ref.prob = 0.9, conf.prob = 0.9,
method = "parametric", exact = TRUE)

ssize.reference.range(delta = 0.01, ref.prob = 0.9, conf.prob = 0.9,

36 ssize.reference.range

method = "nonparametric", exact = TRUE)
ssize.reference.range(delta = 0.01, ref.prob = 0.9, conf.prob = 0.9,

method = "parametric", exact = FALSE)
ssize.reference.range(delta = 0.01, ref.prob = 0.9, conf.prob = 0.9,

method = "nonparametric", exact = FALSE)

ssize.reference.range(delta = 0.015, ref.prob = 0.95, conf.prob = 0.9,
method = "parametric", exact = TRUE)

ssize.reference.range(delta = 0.015, ref.prob = 0.95, conf.prob = 0.9,
method = "nonparametric", exact = TRUE)

ssize.reference.range(delta = 0.015, ref.prob = 0.95, conf.prob = 0.9,
method = "parametric", exact = FALSE)

ssize.reference.range(delta = 0.015, ref.prob = 0.95, conf.prob = 0.9,
method = "nonparametric", exact = FALSE)

ssize.reference.range(delta = 0.0125, ref.prob = 0.95, conf.prob = 0.9,
method = "parametric", exact = TRUE)

ssize.reference.range(delta = 0.0125, ref.prob = 0.95, conf.prob = 0.9,
method = "nonparametric", exact = TRUE)

ssize.reference.range(delta = 0.0125, ref.prob = 0.95, conf.prob = 0.9,
method = "parametric", exact = FALSE)

ssize.reference.range(delta = 0.0125, ref.prob = 0.95, conf.prob = 0.9,
method = "nonparametric", exact = FALSE)

ssize.reference.range(delta = 0.01, ref.prob = 0.95, conf.prob = 0.9,
method = "parametric", exact = TRUE)

ssize.reference.range(delta = 0.01, ref.prob = 0.95, conf.prob = 0.9,
method = "nonparametric", exact = TRUE)

ssize.reference.range(delta = 0.01, ref.prob = 0.95, conf.prob = 0.9,
method = "parametric", exact = FALSE)

ssize.reference.range(delta = 0.01, ref.prob = 0.95, conf.prob = 0.9,
method = "nonparametric", exact = FALSE)

ssize.reference.range(delta = 0.0075, ref.prob = 0.95, conf.prob = 0.9,
method = "parametric", exact = TRUE)

ssize.reference.range(delta = 0.0075, ref.prob = 0.95, conf.prob = 0.9,
method = "nonparametric", exact = TRUE)

ssize.reference.range(delta = 0.0075, ref.prob = 0.95, conf.prob = 0.9,
method = "parametric", exact = FALSE)

ssize.reference.range(delta = 0.0075, ref.prob = 0.95, conf.prob = 0.9,
method = "nonparametric", exact = FALSE)

ssize.reference.range(delta = 0.005, ref.prob = 0.95, conf.prob = 0.9,
method = "parametric", exact = TRUE)

ssize.reference.range(delta = 0.005, ref.prob = 0.95, conf.prob = 0.9,
method = "nonparametric", exact = TRUE)

ssize.reference.range(delta = 0.005, ref.prob = 0.95, conf.prob = 0.9,
method = "parametric", exact = FALSE)

ssize.reference.range(delta = 0.005, ref.prob = 0.95, conf.prob = 0.9,
method = "nonparametric", exact = FALSE)

results are equivalent to one-sided reference range with coverage of

volcano 37

95 percent instead of 90 percent; for example
ssize.reference.range(delta = 0.03, ref.prob = 0.95, conf.prob = 0.9,

method = "parametric", exact = TRUE, alternative = "one.sided")
135 vs 125 (error in Table 1)
ssize.reference.range(delta = 0.03, ref.prob = 0.95, conf.prob = 0.9,

method = "nonparametric", exact = TRUE, alternative = "one.sided")
ssize.reference.range(delta = 0.03, ref.prob = 0.95, conf.prob = 0.9,

method = "parametric", exact = FALSE, alternative = "one.sided")
ssize.reference.range(delta = 0.03, ref.prob = 0.95, conf.prob = 0.9,

method = "nonparametric", exact = FALSE, alternative = "one.sided")

volcano Volcano Plots

Description

Produce volcano plot(s) for simulations of power and type-I-error of tests.

Usage

S3 method for class 'sim.power.ttest'
volcano(x, alpha = 1, shape = 19,

hex = FALSE, bins = 50, ...)

S3 method for class 'sim.power.wtest'
volcano(x, alpha = 1, shape = 19,

hex = FALSE, bins = 50, ...)

Arguments

x object of class sim.power.ttest.

alpha bleding factor (default: no blending.

shape point shape used.

hex logical, should hexagonal binning be used.

bins number of bins used for hexagonal binning.

... further arguments that may be passed through).

Details

The plot generates a ggplot2 object that is shown.

Missing values are handled by the ggplot2 functions.

Value

Object of class gg and ggplot.

38 volcano

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Wikipedia contributors, Volcano plot (statistics), Wikipedia, The Free Encyclopedia, https://en.
wikipedia.org/w/index.php?title=Volcano_plot_(statistics)&oldid=900217316 (accessed
December 25, 2019).

For more sophisticated and flexible volcano plots see for instance: Blighe K, Rana S, Lewis M
(2019). EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling.
R/Bioconductor package. https://github.com/kevinblighe/EnhancedVolcano.

See Also

volcano

Examples

res1 <- sim.power.t.test(nx = 5, rx = rnorm, rx.H0 = rnorm,
ny = 10, ry = function(x) rnorm(x, mean = 3, sd = 3),
ry.H0 = function(x) rnorm(x, sd = 3))

volcano(res1)

low number of iterations to reduce computation time
res2 <- sim.power.wilcox.test(nx = 6, rx = rnorm, rx.H0 = rnorm,

ny = 6, ry = function(x) rnorm(x, mean = 2),
ry.H0 = rnorm, iter = 100, conf.int = TRUE)

volcano(res2)

https://en.wikipedia.org/w/index.php?title=Volcano_plot_(statistics)&oldid=900217316
https://en.wikipedia.org/w/index.php?title=Volcano_plot_(statistics)&oldid=900217316
https://github.com/kevinblighe/EnhancedVolcano

Index

∗ hplot
hist, 3
qqunif, 22
volcano, 37

∗ htest
power.ancova, 4
power.diagnostic.test, 6
power.hsu.t.test, 8
power.mpe.known.var, 12
power.mpe.unknown.var, 13
power.nb.test, 15
power.prop1.test, 18
power.welch.t.test, 19
print.power.mpe.test, 21
sim.power.t.test, 24
sim.power.wilcox.test, 26
sim.ssize.wilcox.test, 28
ssize.pcc, 31
ssize.propCI, 32
ssize.reference.range, 33

∗ multivariate
power.mpe.atleast.one, 10
power.mpe.known.var, 12
power.mpe.unknown.var, 13

∗ package
MKpower-package, 2

∗ power.htest
print.power.mpe.test, 21

binomCI, 33

glm.nb, 17

hist, 3, 3
hsu.t.test, 25

LocationTests, 27

MKpower (MKpower-package), 2
MKpower-package, 2

NullDistribution, 27

optimize, 32

power.ancova, 4
power.anova.test, 5
power.diagnostic.test, 6
power.hsu.t.test, 8
power.mpe.atleast.one, 10
power.mpe.known.var, 12, 14, 15, 22
power.mpe.unknown.var, 13, 13, 22
power.nb.test, 15
power.prop.test, 18, 19
power.prop1.test, 18, 33
power.t.test, 5, 9, 20
power.welch.t.test, 9, 19
print, 21, 22
print.power.htest, 22
print.power.mpe.test, 21
prop.test, 19

qqunif, 22

rnegbin, 16, 17

sim.power.t.test, 24
sim.power.wilcox.test, 26
sim.ssize.wilcox.test, 28
ssize.pcc, 31
ssize.propCI, 32
ssize.reference.range, 33

t.test, 9, 20, 25
ttest, 25

uniroot, 8, 9, 11, 12, 14, 20, 35

volcano, 37, 38

wilcox.test, 27, 29
wilcoxon, 27–29

39

	MKpower-package
	hist
	power.ancova
	power.diagnostic.test
	power.hsu.t.test
	power.mpe.atleast.one
	power.mpe.known.var
	power.mpe.unknown.var
	power.nb.test
	power.prop1.test
	power.welch.t.test
	print.power.mpe.test
	qqunif
	sim.power.t.test
	sim.power.wilcox.test
	sim.ssize.wilcox.test
	ssize.pcc
	ssize.propCI
	ssize.reference.range
	volcano
	Index

