
Package: MKmisc (via r-universe)
September 10, 2024

Version 1.9

Date 2022-11-19

Title Miscellaneous Functions from M. Kohl

Author Matthias Kohl [aut, cre] (0000-0001-9514-8910)

Maintainer Matthias Kohl <Matthias.Kohl@stamats.de>

Depends R(>= 3.5.0)

Imports stats, utils, graphics, grDevices, RColorBrewer, robustbase,
ggplot2, scales, limma

Suggests gplots, Amelia, knitr, rmarkdown, exactRankTests, foreach,
parallel, doParallel

VignetteBuilder knitr

Description Contains several functions for statistical data analysis;
e.g. for sample size and power calculations, computation of
confidence intervals and tests, and generation of similarity
matrices.

License LGPL-3

URL https://github.com/stamats/MKmisc

Repository https://stamats.r-universe.dev

RemoteUrl https://github.com/stamats/mkmisc

RemoteRef HEAD

RemoteSha e738e1f1b18899af42c1149335c6ee063e9de80c

Contents
MKmisc-package . 3
AUC . 3
AUC.test . 4
binomCI . 6
corDist . 8
corPlot . 9

1

https://github.com/stamats/MKmisc

2 Contents

CV . 11
cvCI . 12
fiveNS . 13
glog . 14
heatmapCol . 15
HLgof.test . 16
hsu.t.test . 17
imputeSD . 19
IQrange . 21
madMatrix . 22
madPlot . 23
meanAD . 25
melt.long . 26
mi.t.test . 27
mod.oneway.test . 30
mod.t.test . 31
normCI . 33
normDiffCI . 34
oneWayAnova . 36
optCutoff . 37
or2rr . 38
pairwise.auc . 39
pairwise.fc . 40
pairwise.fun . 42
pairwise.logfc . 43
pairwise.mod.t.test . 44
perfMeasures . 45
power.diagnostic.test . 47
power.hsu.t.test . 49
power.nb.test . 51
power.welch.t.test . 53
predValues . 55
print.confint . 56
qboxplot . 57
qbxp.stats . 60
quantileCI . 62
repMeans . 63
risks . 65
rrCI . 66
simCorVars . 67
simPlot . 68
SNR . 69
ssize.pcc . 70
stringDist . 72
stringSim . 73
thyroid . 75
traceBack . 76
transformations . 77

MKmisc-package 3

twoWayAnova . 79

Index 81

MKmisc-package Miscellaneous Functions from M. Kohl.

Description

Contains several functions for statistical data analysis; e.g. for sample size and power calculations,
computation of confidence intervals, and generation of similarity matrices.

Details

Package: MKmisc
Type: Package
Version: 1.9
Date: 2022-11-19
Depends: R(>= 3.5.0)
Imports: stats, utils, graphics, grDevices, RColorBrewer, robustbase, ggplot2, scales, limma
Suggests: gplots, Amelia, knitr, rmarkdown, exactRankTests, foreach, parallel, doParallel
License: LGPL-3
URL: https://github.com/stamats/MKmisc

library(MKmisc)

Author(s)

Matthias Kohl https://www.stamats.de

Maintainer: Matthias Kohl <matthias.kohl@stamats.de>

AUC Compute AUC

Description

The function computes AUC.

Usage

AUC(x, y, group, switchAUC = TRUE)

https://www.stamats.de

4 AUC.test

Arguments

x numeric vector.

y numeric vector. If missing, group has to be specified.

group grouping vector or factor.

switchAUC logical value. Switch AUC; see Details section.

Details

The function computes the area under the receiver operating characteristic curve (AUC under ROC
curve).

If AUC < 0.5, a warning is printed and 1-AUC is returned. This behaviour can be suppressed by using
switchAUC = FALSE

The implementation uses the connection of AUC to the Wilcoxon rank sum test; see Hanley and
McNeil (1982).

Value

AUC value.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

J. A. Hanley and B. J. McNeil (1982). The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology, 143, 29-36.

Examples

set.seed(13)
x <- rnorm(100) ## assumed as log2-data
g <- sample(1:2, 100, replace = TRUE)
AUC(x, group = g)
avoid switching AUC
AUC(x, group = g, switchAUC = FALSE)

AUC.test AUC-Test

Description

Performs tests for one and two AUCs.

Usage

AUC.test(pred1, lab1, pred2, lab2, conf.level = 0.95, paired = FALSE)

AUC.test 5

Arguments

pred1 numeric vector.

lab1 grouping vector or factor for pred1.

pred2 numeric vector.

lab2 grouping vector or factor for pred2.

conf.level confidence level of the interval.

paired not yet implemented.

Details

If pred2 and lab2 are missing, the AUC for pred1 and lab1 is tested using the Wilcoxon signed
rank test; see wilcox.test.

If pred1 and lab1 as well as pred2 and lab2 are specified, the Hanley and McNeil test (cf. Hanley
and McNeil (1982)) is computed.

Value

A list with AUC, SE and confidence interval as well as the corresponding test result.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

J. A. Hanley and B. J. McNeil (1982). The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology, 143, 29-36.

See Also

wilcox.test, AUC

Examples

set.seed(13)
x <- rnorm(100) ## assumed as log2-data
g <- sample(1:2, 100, replace = TRUE)
AUC.test(x, g)
y <- rnorm(100) ## assumed as log2-data
h <- sample(1:2, 100, replace = TRUE)
AUC.test(x, g, y, h)

6 binomCI

binomCI Confidence Intervals for Binomial Proportions

Description

This function can be used to compute confidence intervals for binomial proportions.

Usage

binomCI(x, n, conf.level = 0.95, method = "wilson", rand = 123)

Arguments

x number of successes

n number of trials

conf.level confidence level

method character string specifing which method to use; see details.

rand seed for random number generator; see details.

Details

The Wald interval is obtained by inverting the acceptance region of the Wald large-sample normal
test.

The Wilson interval, which is the default, was introduced by Wilson (1927) and is the inversion of
the CLT approximation to the family of equal tail tests of p = p0. The Wilson interval is recom-
mended by Agresti and Coull (1998) as well as by Brown et al (2001).

The Agresti-Coull interval was proposed by Agresti and Coull (1998) and is a slight modification
of the Wilson interval. The Agresti-Coull intervals are never shorter than the Wilson intervals; cf.
Brown et al (2001).

The Jeffreys interval is an implementation of the equal-tailed Jeffreys prior interval as given in
Brown et al (2001).

The modified Wilson interval is a modification of the Wilson interval for x close to 0 or n as pro-
posed by Brown et al (2001).

The modified Jeffreys interval is a modification of the Jeffreys interval for x == 0 | x == 1 and x ==
n-1 | x == n as proposed by Brown et al (2001).

The Clopper-Pearson interval is based on quantiles of corresponding beta distributions. This is
sometimes also called exact interval.

The arcsine interval is based on the variance stabilizing distribution for the binomial distribution.

The logit interval is obtained by inverting the Wald type interval for the log odds.

The Witting interval (cf. Beispiel 2.106 in Witting (1985)) uses randomization to obtain uniformly
optimal lower and upper confidence bounds (cf. Satz 2.105 in Witting (1985)) for binomial propor-
tions.

For more details we refer to Brown et al (2001) as well as Witting (1985).

binomCI 7

Value

A list with class "confint" containing the following components:

estimate the estimated probability of success.

conf.int a confidence interval for the probability of success.

Note

A first version of this function appeared in R package SLmisc.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

A. Agresti and B.A. Coull (1998). Approximate is better than "exact" for interval estimation of
binomial proportions. American Statistician, 52, 119-126.

L.D. Brown, T.T. Cai and A. Dasgupta (2001). Interval estimation for a binomial proportion. Sta-
tistical Science, 16(2), 101-133.

H. Witting (1985). Mathematische Statistik I. Stuttgart: Teubner.

See Also

binom.test, binconf

Examples

binomCI(x = 42, n = 43, method = "wald")
binomCI(x = 42, n = 43, method = "wilson")
binomCI(x = 42, n = 43, method = "agresti-coull")
binomCI(x = 42, n = 43, method = "jeffreys")
binomCI(x = 42, n = 43, method = "modified wilson")
binomCI(x = 42, n = 43, method = "modified jeffreys")
binomCI(x = 42, n = 43, method = "clopper-pearson")
binomCI(x = 42, n = 43, method = "arcsine")
binomCI(x = 42, n = 43, method = "logit")
binomCI(x = 42, n = 43, method = "witting")

the confidence interval computed by binom.test
corresponds to the Clopper-Pearson interval
binomCI(x = 42, n = 43, method = "clopper-pearson")$conf.int
binom.test(x = 42, n = 43)$conf.int

8 corDist

corDist Correlation Distance Matrix Computation

Description

The function computes and returns the correlation and absolute correlation distance matrix com-
puted by using the specified distance measure to compute the distances between the rows of a data
matrix.

Usage

corDist(x, method = "pearson", diag = FALSE, upper = FALSE, abs = FALSE,
use = "pairwise.complete.obs", ...)

Arguments

x a numeric matrix or data frame

method the correlation distance measure to be used. This must be one of "pearson",
"spearman", "kandall", "cosine", "mcd" or "ogk", respectively. Any unam-
biguous substring can be given.

diag logical value indicating whether the diagonal of the distance matrix should be
printed by ’print.dist’.

upper logical value indicating whether the upper triangle of the distance matrix should
be printed by ’print.dist’.

abs logical, compute absolute correlation distances

use character, correponds to argument use of function cor

... further arguments to functions covMcd or covOGK, respectively.

Details

The function computes the Pearson, Spearman, Kendall or Cosine sample correlation and absolute
correlation; confer Section 12.2.2 of Gentleman et al (2005). For more details about the arguments
we refer to functions dist and cor. Moreover, the function computes the minimum covariance
determinant or the orthogonalized Gnanadesikan-Kettenring estimator. For more details we refer to
functions covMcd and covOGK, respectively.

Value

corDist returns an object of class "dist"; cf. dist.

Note

A first version of this function appeared in package SLmisc.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

corPlot 9

References

Gentleman R. Ding B., Dudoit S. and Ibrahim J. (2005). Distance Measures in DNA Microarray
Data Analysis. In: Gentleman R., Carey V.J., Huber W., Irizarry R.A. and Dudoit S. (editors)
Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer.

P. J. Rousseeuw and A. M. Leroy (1987). Robust Regression and Outlier Detection. Wiley.

P. J. Rousseeuw and K. van Driessen (1999) A fast algorithm for the minimum covariance determi-
nant estimator. Technometrics 41, 212-223.

Pison, G., Van Aelst, S., and Willems, G. (2002), Small Sample Corrections for LTS and MCD,
Metrika, 55, 111-123.

Maronna, R.A. and Zamar, R.H. (2002). Robust estimates of location and dispersion of high-
dimensional datasets; Technometrics 44(4), 307-317.

Gnanadesikan, R. and John R. Kettenring (1972). Robust estimates, residuals, and outlier detection
with multiresponse data. Biometrics 28, 81-124.

Examples

only a dummy example
M <- matrix(rnorm(1000), ncol = 20)
D <- corDist(M)

corPlot Plot of similarity matrix based on correlation

Description

Plot of similarity matrix. This function is a slight modification of function plot.cor of the archived
package "sma".

Usage

corPlot(x, new = FALSE, col, minCor,
labels = FALSE, lab.both.axes = FALSE, labcols = "black",
title = "", cex.title = 1.2,
protocol = FALSE, cex.axis = 0.8,
cex.axis.bar = 1, signifBar = 2, ...)

Arguments

x data or correlation matrix, respectively

new If new=FALSE, x must already be a correlation matrix. If new=TRUE, the correla-
tion matrix for the columns of x is computed and displayed in the image.

col colors palette for image. If missing, the RdYlGn palette of RColorBrewer is
used.

minCor numeric value in [-1,1], used to adjust col

10 corPlot

labels vector of character strings to be placed at the tickpoints, labels for the columns
of x.

lab.both.axes logical, display labels on both axes

labcols colors to be used for the labels of the columns of x. labcols can have either
length 1, in which case all the labels are displayed using the same color, or the
same length as labels, in which case a color is specified for the label of each
column of x.

title character string, overall title for the plot.

cex.title A numerical value giving the amount by which plotting text and symbols should
be magnified relative to the default; cf. par, cex.main.

protocol logical, display color bar without numbers

cex.axis The magnification to be used for axis annotation relative to the current setting
of ’cex’; cf. par.

cex.axis.bar The magnification to be used for axis annotation of the color bar relative to the
current setting of ’cex’; cf. par.

signifBar integer indicating the precision to be used for the bar.

... graphical parameters may also be supplied as arguments to the function (see
par). For comparison purposes, it is good to set zlim=c(-1,1).

Details

This functions generates the so called similarity matrix (based on correlation) for a microarray
experiment.

If min(x), respectively min(cor(x)) is smaller than minCor, the colors in col are adjusted such
that the minimum correlation value which is color coded is equal to minCor.

Value

invisible()

Note

A first version of this function appeared in package SLmisc.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Sandrine Dudoit, Yee Hwa (Jean) Yang, Benjamin Milo Bolstad and with contributions from Natalie
Thorne, Ingrid Loennstedt and Jessica Mar. sma: Statistical Microarray Analysis.
http://www.stat.berkeley.edu/users/terry/zarray/Software/smacode.html

CV 11

Examples

only a dummy example
M <- matrix(rnorm(1000), ncol = 20)
colnames(M) <- paste("Sample", 1:20)
M.cor <- cor(M)

corPlot(M.cor, minCor = min(M.cor))
corPlot(M.cor, minCor = min(M.cor), lab.both.axes = TRUE)
corPlot(M.cor, minCor = min(M.cor), protocol = TRUE)
corPlot(M.cor, minCor = min(M.cor), signifBar = 1)

CV Compute CV

Description

The functions compute CV as well as two robust versions of the CV.

Usage

CV(x, na.rm = FALSE)

Arguments

x numeric vector.

na.rm logical. Should missing values be removed?

Details

The functions compute the (classical) coefficient of variation as well as two robust variants.

medCV uses the (standardized) MAD instead of SD and median instead of mean.

iqrCV uses the (standardized) IQR instead of SD and median instead of mean.

Value

CV value.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

C.N.P.G. Arachchige, L.A. Prendergast and R.G. Staudte. Robust analogues to the Coefficient of
Variation. https://arxiv.org/abs/1907.01110.

12 cvCI

Examples

5% outliers
out <- rbinom(100, prob = 0.05, size = 1)
sum(out)
x <- (1-out)*rnorm(100, mean = 10, sd = 2) + out*25
CV(x)
medCV(x)
iqrCV(x)

cvCI Confidence Intervals for Coefficient of Variation

Description

This function can be used to compute confidence intervals for the (classical) coefficient of variation.

Usage

cvCI(x, conf.level = 0.95, method = "miller", na.rm = FALSE)

Arguments

x numeric vector.
conf.level confidence level
method character string specifing which method to use; see details.
na.rm logical. Should missing values be removed?

Details

For details about the confidence intervals we refer to Gulhar et al (2012) and Arachchige et al
(2019).

Value

A list with class "confint" containing the following components:

estimate the estimated coefficient of variation.
conf.int a confidence interval for the coefficient of variation.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

C.N.P.G. Arachchige, L.A. Prendergast and R.G. Staudte (2019). Robust analogues to the Coeffi-
cient of Variation. https://arxiv.org/abs/1907.01110.

M. Gulhar, G. Kibria, A. Albatineh, N.U. Ahmed (2012). A comparison of some confidence inter-
vals for estimating the population coefficient of variation: a simulation study. Sort, 36(1), 45-69.

fiveNS 13

See Also

CV

Examples

x <- rnorm(100, mean = 10, sd = 2) # CV = 0.2
cvCI(x, method = "miller")
cvCI(x, method = "sharma")
cvCI(x, method = "curto")
cvCI(x, method = "mckay")
cvCI(x, method = "vangel")
cvCI(x, method = "panichkitkosolkul")
cvCI(x, method = "medmiller")
cvCI(x, method = "medmckay")
cvCI(x, method = "medvangel")
cvCI(x, method = "medcurto")
cvCI(x, method = "gulhar")

fiveNS Five-Number Summaries

Description

Function to compute five-number summaries (minimum, 1st quartile, median, 3rd quartile, maxi-
mum)

Usage

fiveNS(x, na.rm = TRUE, type = 7)

Arguments

x numeric vector

na.rm logical; remove NA before the computations.

type an integer between 1 and 9 selecting one of nine quantile algorithms; for more
details see quantile.

Details

In contrast to fivenum the functions computes the first and third quartile using function quantile.

Value

A numeric vector of length 5 containing the summary information.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

14 glog

See Also

fivenum, quantile

Examples

x <- rnorm(100)
fiveNS(x)
fiveNS(x, type = 2)
fivenum(x)

glog Compute Generalized Logarithm

Description

The functions compute the generalized logarithm, which is more or less identical to the area hyper-
bolic sine, and their inverse; see details.

Usage

glog(x, base = exp(1))
glog10(x)
glog2(x)
inv.glog(x, base = exp(1))
inv.glog10(x)
inv.glog2(x)

Arguments

x a numeric or complex vector.

base a positive or a positive or complex number: the base with respect to which
logarithms are computed. Defaults to e=exp(1).

Details

The function computes
log(x+

√
x2 + 1)− log(2)

where the first part corresponds to the area hyperbolic sine. Subtracting log(2) makes the function
asymptotically identical to the logarithm.

Value

A vector of the same length as x containing the transformed values.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

heatmapCol 15

Examples

curve(log, from = -3, to = 5)
curve(glog, from = -3, to = 5, add = TRUE, col = "orange")
legend("topleft", fill = c("black", "orange"), legend = c("log", "glog"))

curve(log10(x), from = -3, to = 5)
curve(glog10(x), from = -3, to = 5, add = TRUE, col = "orange")
legend("topleft", fill = c("black", "orange"), legend = c("log10", "glog10"))

inv.glog(glog(10))
inv.glog(glog(10, base = 3), base = 3)
inv.glog10(glog10(10))
inv.glog2(glog2(10))

heatmapCol Generate colors for heatmaps

Description

This function modifies a given color vector as used for heatmaps.

Usage

heatmapCol(data, col, lim, na.rm = TRUE)

Arguments

data matrix or data.frame; data which shall be displayed in a heatmap; ranging from
negative to positive numbers.

col vector of colors used for heatmap.

lim constant colors are used for data below -lim resp. above lim.

na.rm logical; remove NA values.

Details

Colors below and above a specified value are kept constant. In addition, the colors are sym-
metrizised.

Value

vector of colors

Note

A first version of this function appeared in package SLmisc.

16 HLgof.test

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

Examples

data.plot <- matrix(rnorm(100*50, sd = 1), ncol = 50)
colnames(data.plot) <- paste("patient", 1:50)
rownames(data.plot) <- paste("gene", 1:100)
data.plot[1:70, 1:30] <- data.plot[1:70, 1:30] + 3
data.plot[71:100, 31:50] <- data.plot[71:100, 31:50] - 1.4
data.plot[1:70, 31:50] <- rnorm(1400, sd = 1.2)
data.plot[71:100, 1:30] <- rnorm(900, sd = 1.2)
nrcol <- 128

require(gplots)
require(RColorBrewer)
myCol <- rev(colorRampPalette(brewer.pal(10, "RdBu"))(nrcol))
heatmap.2(data.plot, col = myCol, trace = "none", tracecol = "black")
farbe <- heatmapCol(data = data.plot, col = myCol,

lim = min(abs(range(data.plot)))-1)
heatmap.2(data.plot, col = farbe, trace = "none", tracecol = "black")

HLgof.test Hosmer-Lemeshow goodness of fit tests.

Description

The function computes Hosmer-Lemeshow goodness of fit tests for C and H statistic as well as the
le Cessie-van Houwelingen-Copas-Hosmer unweighted sum of squares test for global goodness of
fit.

Usage

HLgof.test(fit, obs, ngr = 10, X, verbose = FALSE)

Arguments

fit numeric vector with fitted probabilities.

obs numeric vector with observed values.

ngr number of groups for C and H statistic.

X covariate(s) for le Cessie-van Houwelingen-Copas-Hosmer global goodness of
fit test.

verbose logical, print intermediate results.

hsu.t.test 17

Details

Hosmer-Lemeshow goodness of fit tests are computed; see Lemeshow and Hosmer (1982).

If X is specified, the le Cessie-van Houwelingen-Copas-Hosmer unweighted sum of squares test for
global goodness of fit is additionally determined; see Hosmer et al. (1997). A more general version
of this test is implemented in function residuals.lrm in package rms.

Value

A list of test results.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

S. Lemeshow and D.W. Hosmer (1982). A review of goodness of fit statistics for use in the devel-
opment of logistic regression models. American Journal of Epidemiology, 115(1), 92-106.

D.W. Hosmer, T. Hosmer, S. le Cessie, S. Lemeshow (1997). A comparison of goodness-of-fit tests
for the logistic regression model. Statistics in Medicine, 16, 965-980.

See Also

residuals.lrm

Examples

set.seed(111)
x1 <- factor(sample(1:3, 50, replace = TRUE))
x2 <- rnorm(50)
obs <- sample(c(0,1), 50, replace = TRUE)
fit <- glm(obs ~ x1+x2, family = binomial)
HLgof.test(fit = fitted(fit), obs = obs)
HLgof.test(fit = fitted(fit), obs = obs, X = model.matrix(obs ~ x1+x2))

hsu.t.test Hsu Two-Sample t-Test

Description

Performs Hsu two sample t-tests on vectors of data.

18 hsu.t.test

Usage

hsu.t.test(x, ...)

Default S3 method:
hsu.t.test(x, y,

alternative = c("two.sided", "less", "greater"),
mu = 0, conf.level = 0.95, ...)

S3 method for class 'formula'
hsu.t.test(formula, data, subset, na.action, ...)

Arguments

x a (non-empty) numeric vector of data values.

y a (non-empty) numeric vector of data values.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

mu a number indicating the true value of the mean (or difference in means if you
are performing a two sample test).

conf.level confidence level of the interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data
values and rhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

The function and its documentation was adapted from t.test.

alternative = "greater" is the alternative that x has a larger mean than y.

If the input data are effectively constant (compared to the larger of the two means) an error is
generated.

One should at least have six observations per group to apply the test; see Section 6.8.3 of Hedderich
and Sachs (2016).

Value

A list with class "htest" containing the following components:

statistic the value of the t-statistic.

parameter the degrees of freedom for the t-statistic.

imputeSD 19

p.value the p-value for the test.

conf.int a confidence interval for the mean appropriate to the specified alternative hy-
pothesis.

estimate the estimated means and standard deviations.

null.value the specified hypothesized value of the mean or mean difference depending on
whether it was a one-sample test or a two-sample test.

stderr the standard error of the difference in means, used as denominator in the t-
statistic formula.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of t-test was performed.

data.name a character string giving the name(s) of the data.

References

J. Hedderich, L. Sachs. Angewandte Statistik: Methodensammlung mit R. Springer 2016.

See Also

t.test

Examples

Examples taken and adapted from function t.test
t.test(1:10, y = c(7:20)) # P = .00001855
t.test(1:10, y = c(7:20, 200)) # P = .1245 -- NOT significant anymore
hsu.t.test(1:10, y = c(7:20))
hsu.t.test(1:10, y = c(7:20, 200))

Traditional interface
with(sleep, t.test(extra[group == 1], extra[group == 2]))
with(sleep, hsu.t.test(extra[group == 1], extra[group == 2]))
Formula interface
t.test(extra ~ group, data = sleep)
hsu.t.test(extra ~ group, data = sleep)

imputeSD Impute Standard Deviations for Changes from Baseline

Description

The function imputes standard deviations for changes from baseline adopting the approach describe
in the Cochrane handbook, Section 16.1.3.2.

Usage

imputeSD(SD1, SD2, SDchange)

20 imputeSD

Arguments

SD1 numeric vector, baseline SD.

SD2 numeric vector, follow-up SD.

SDchange numeric vector, SD for changes from baseline.

Details

The function imputes standard deviations for changes from baseline adopting the approach describe
in the Cochrane handbook, Section 16.1.3.2.

1) Missing SD1 are replaced by correspondig values of SD2 and vice versa.

2) Correlations for complete data (rows) are computed.

3) Minimum, mean and maximum correlation (over rows) are computed.

4) Missing values of SDchange are computed by the formula provided in the handbook. The mini-
mum, mean and maximum correlation are used leading to maximal, mean and minimal SD values
that may be used for imputation as well as a sensitivity analysis.

Value

data.frame with possibly imputed SD1 and SD2 values as well as the given SDchange values
are returen. Moreover, the computed correlations as well as possible values for the imputation of
SDchange are returned.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Ver-
sion 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.handbook.cochrane.org.

Examples

SD1 <- c(0.149, 0.022, 0.036, 0.085, 0.125, NA, 0.139, 0.124, 0.038)
SD2 <- c(NA, 0.039, 0.038, 0.087, 0.125, NA, 0.135, 0.126, 0.038)
SDchange <- c(NA, NA, NA, 0.026, 0.058, NA, NA, NA, NA)
imputeSD(SD1, SD2, SDchange)

IQrange 21

IQrange The Interquartile Range

Description

Computes (standardized) interquartile range of the x values.

Usage

IQrange(x, na.rm = FALSE, type = 7)
sIQR(x, na.rm = FALSE, type = 7, constant = 2*qnorm(0.75))

Arguments

x a numeric vector.

na.rm logical. Should missing values be removed?

type an integer between 1 and 9 selecting one of nine quantile algorithms; for more
details see quantile.

constant standardizing contant; see details below.

Details

This function IQrange computes quartiles as IQR(x) = quantile(x,3/4) - quantile(x,1/4).
The function is identical to function IQR. It was added before the type argument was introduced to
function IQR in 2010 (r53643, r53644).

For normally N(m, 1) distributed X , the expected value of IQR(X) is 2*qnorm(3/4) = 1.3490,
i.e., for a normal-consistent estimate of the standard deviation, use IQR(x) / 1.349. This is imple-
mented in function sIQR (standardized IQR).

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Tukey, J. W. (1977). Exploratory Data Analysis. Reading: Addison-Wesley.

See Also

quantile, IQR.

22 madMatrix

Examples

IQrange(rivers)

identical to
IQR(rivers)

other quantile algorithms
IQrange(rivers, type = 4)
IQrange(rivers, type = 5)

standardized IQR
sIQR(rivers)

right-skewed data distribution
sd(rivers)
mad(rivers)

for normal data
x <- rnorm(100)
sd(x)
sIQR(x)
mad(x)

madMatrix Compute MAD between colums of a matrix or data.frame

Description

Compute MAD between colums of a matrix or data.frame. Can be used to create a similarity matrix
for a microarray experiment.

Usage

madMatrix(x)

Arguments

x matrix or data.frame

Details

This functions computes the so called similarity matrix (based on MAD) for a microarray experi-
ment; cf. Buness et. al. (2004).

Value

matrix of MAD values between colums of x

madPlot 23

Note

A first version of this function appeared in package SLmisc.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Andreas Buness, Wolfgang Huber, Klaus Steiner, Holger Sueltmann, and Annemarie Poustka. ar-
rayMagic: two-colour cDNA microarray quality control and preprocessing. Bioinformatics Ad-
vance Access published on September 28, 2004. doi:10.1093/bioinformatics/bti052

See Also

plotMAD

Examples

only a dummy example
madMatrix(matrix(rnorm(1000), ncol = 10))

madPlot Plot of similarity matrix based on MAD

Description

Plot of similarity matrix based on MAD between microarrays.

Usage

madPlot(x, new = FALSE, col, maxMAD = 3, labels = FALSE,
labcols = "black", title = "", protocol = FALSE, ...)

Arguments

x data or correlation matrix, respectively

new If new=FALSE, x must already be a matrix with MAD values. If new=TRUE, the
MAD matrix for the columns of x is computed and displayed in the image.

col colors palette for image. If missing, the RdYlGn palette of RColorBrewer is
used.

maxMAD maximum MAD value displayed

labels vector of character strings to be placed at the tickpoints, labels for the columns
of x.

24 madPlot

labcols colors to be used for the labels of the columns of x. labcols can have either
length 1, in which case all the labels are displayed using the same color, or the
same length as labels, in which case a color is specified for the label of each
column of x.

title character string, overall title for the plot.

protocol logical, display color bar without numbers

... graphical parameters may also be supplied as arguments to the function (see
par). For comparison purposes, it is good to set zlim=c(-1,1).

Details

This functions generates the so called similarity matrix (based on MAD) for a microarray experi-
ment; cf. Buness et. al. (2004). The function is similar to corPlot.

Note

A first version of this function appeared in package SLmisc.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Sandrine Dudoit, Yee Hwa (Jean) Yang, Benjamin Milo Bolstad and with contributions from Natalie
Thorne, Ingrid Loennstedt and Jessica Mar. sma: Statistical Microarray Analysis.
http://www.stat.berkeley.edu/users/terry/zarray/Software/smacode.html

Andreas Buness, Wolfgang Huber, Klaus Steiner, Holger Sueltmann, and Annemarie Poustka. ar-
rayMagic: two-colour cDNA microarray quality control and preprocessing. Bioinformatics Ad-
vance Access published on September 28, 2004. doi:10.1093/bioinformatics/bti052

See Also

corPlot

Examples

only a dummy example
set.seed(13)
x <- matrix(rnorm(1000), ncol = 10)
x[1:20,5] <- x[1:20,5] + 10
madPlot(x, new = TRUE, maxMAD = 2.5)
in contrast
corPlot(x, new = TRUE, minCor = -0.5)

meanAD 25

meanAD The Mean Absolute Deviation

Description

Computes (standardized) mean absolute deviation.

Usage

meanAD(x, na.rm = FALSE, constant = sqrt(pi/2))

Arguments

x a numeric vector.

na.rm logical. Should missing values be removed?

constant standardizing contant; see details below.

Details

The mean absolute deviation is a consistent estimator of
√
2/πσ for the standard deviation of a

normal distribution. Under minor deviations of the normal distributions its asymptotic variance is
smaller than that of the sample standard deviation (Tukey (1960)).

It works well under the assumption of symmetric, where mean and median coincide. Under the
normal distribution it’s about 18% more efficient (asymptotic relative efficiency) than the median
absolute deviation ((1/qnorm(0.75))/sqrt(pi/2)) and about 12% less efficient than the sample
standard deviation (Tukey (1960)).

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Tukey, J. W. (1960). A survey of sampling from contaminated distribution. In Olink, I., editor, Con-
tributions to Probablity and Statistics. Essays in Honor of H. Hotelling., pages 448-485. Stanford
University Press.

See Also

sd, mad, sIQR.

26 melt.long

Examples

right skewed data
mean absolute deviation
meanAD(rivers)
standardized IQR
sIQR(rivers)
median absolute deviation
mad(rivers)
sample standard deviation
sd(rivers)

for normal data
x <- rnorm(100)
sd(x)
sIQR(x)
mad(x)
meanAD(x)

Asymptotic relative efficiency for Tukey's symmetric gross-error model
(1-eps)*Norm(mean, sd = sigma) + eps*Norm(mean, sd = 3*sigma)
eps <- seq(from = 0, to = 1, by = 0.001)
ARE <- function(eps){

0.25*((3*(1+80*eps))/((1+8*eps)^2)-1)/(pi*(1+8*eps)/(2*(1+2*eps)^2)-1)
}
plot(eps, ARE(eps), type = "l", xlab = "Proportion of gross-errors",

ylab = "Asymptotic relative efficiency",
main = "ARE of mean absolute deviation w.r.t. sample standard deviation")

abline(h = 1.0, col = "red")
text(x = 0.5, y = 1.5, "Mean absolute deviation is better", col = "red",

cex = 1, font = 1)
lower bound of interval
uniroot(function(x){ ARE(x)-1 }, interval = c(0, 0.002))
upper bound of interval
uniroot(function(x){ ARE(x)-1 }, interval = c(0.5, 0.55))
worst case
optimize(ARE, interval = c(0,1), maximum = TRUE)

melt.long Transform data.frame to Long Form

Description

The function transforms a given data.frame form wide to long form.

Usage

melt.long(data, select, group)

mi.t.test 27

Arguments

data data.frame that shall be transformed.

select optional integer vector to select a subset of the columns of data.

group optional vector to include an additional grouping in the output; for more details
see examples below.

Details

The function transforms a given data.frame form wide to long form. This is for example useful for
plotting with ggplot2.

Value

data.frame in long form.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

Examples

library(ggplot2)
some random data
test <- data.frame(x = rnorm(10), y = rnorm(10), z = rnorm(10))
test.long <- melt.long(test)
test.long
ggplot(test.long, aes(x = variable, y = value)) +

geom_boxplot(aes(fill = variable))
introducing an additional grouping variable
group <- factor(rep(c("a","b"), each = 5))
test.long.gr <- melt.long(test, select = 1:2, group = group)
test.long.gr
ggplot(test.long.gr, aes(x = variable, y = value, fill = group)) +

geom_boxplot()

mi.t.test Multiple Imputation Student’s t-Test

Description

Performs one and two sample t-tests on multiple imputed datasets.

28 mi.t.test

Usage

mi.t.test(miData, ...)

Default S3 method:
mi.t.test(miData, x, y = NULL,

alternative = c("two.sided", "less", "greater"), mu = 0,
paired = FALSE, var.equal = FALSE, conf.level = 0.95,
subset = NULL, ...)

Arguments

miData list of multiple imputed datasets.

x name of a variable that shall be tested.

y an optional name of a variable that shall be tested (paired test) or a variable that
shall be used to split into groups (unpaired test).

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

mu a number indicating the true value of the mean (or difference in means if you
are performing a two sample test).

paired a logical indicating whether you want a paired t-test.

var.equal a logical variable indicating whether to treat the two variances as being equal.
If TRUE then the pooled variance is used to estimate the variance otherwise the
Welch (or Satterthwaite) approximation to the degrees of freedom is used.

conf.level confidence level of the interval.

subset an optional vector specifying a subset of observations to be used.

... further arguments to be passed to or from methods.

Details

alternative = "greater" is the alternative that x has a larger mean than y.

If paired is TRUE then both x and y must be specified and they must be the same length. Missing
values are not allowed as they should have been imputed. If var.equal is TRUE then the pooled
estimate of the variance is used. By default, if var.equal is FALSE then the variance is estimated
separately for both groups and the Welch modification to the degrees of freedom is used.

We use the approach of Rubin (1987) in combination with the adjustment of Barnard and Rubin
(1999).

Value

A list with class "htest" containing the following components:

statistic the value of the t-statistic.

parameter the degrees of freedom for the t-statistic.

p.value the p-value for the test.

mi.t.test 29

conf.int a confidence interval for the mean appropriate to the specified alternative hy-
pothesis.

estimate the estimated mean (one-sample test), difference in means (paired test), or esti-
mated means (two-sample test) as well as the respective standard deviations.

null.value the specified hypothesized value of the mean or mean difference depending on
whether it was a one-sample test or a two-sample test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of t-test was performed.

data.name a character string giving the name(s) of the data.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rubin, D. (1987). Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, New York.

Barnard, J. and Rubin, D. (1999). Small-Sample Degrees of Freedom with Multiple Imputation.
Biometrika, 86(4), 948-955.

See Also

t.test

Examples

Generate some data
set.seed(123)
x <- rnorm(25, mean = 1)
x[sample(1:25, 5)] <- NA
y <- rnorm(20, mean = -1)
y[sample(1:20, 4)] <- NA
pair <- c(rnorm(25, mean = 1), rnorm(20, mean = -1))
g <- factor(c(rep("yes", 25), rep("no", 20)))
D <- data.frame(ID = 1:45, variable = c(x, y), pair = pair, group = g)

Use Amelia to impute missing values
library(Amelia)
res <- amelia(D, m = 10, p2s = 0, idvars = "ID", noms = "group")

Per protocol analysis (Welch two-sample t-test)
t.test(variable ~ group, data = D)
Intention to treat analysis (Multiple Imputation Welch two-sample t-test)
mi.t.test(res$imputations, x = "variable", y = "group")

Per protocol analysis (Two-sample t-test)
t.test(variable ~ group, data = D, var.equal = TRUE)
Intention to treat analysis (Multiple Imputation two-sample t-test)
mi.t.test(res$imputations, x = "variable", y = "group", var.equal = TRUE)

30 mod.oneway.test

Specifying alternatives
mi.t.test(res$imputations, x = "variable", y = "group", alternative = "less")
mi.t.test(res$imputations, x = "variable", y = "group", alternative = "greater")

One sample test
t.test(D$variable[D$group == "yes"])
mi.t.test(res$imputations, x = "variable", subset = D$group == "yes")
mi.t.test(res$imputations, x = "variable", mu = -1, subset = D$group == "yes",

alternative = "less")
mi.t.test(res$imputations, x = "variable", mu = -1, subset = D$group == "yes",

alternative = "greater")

paired test
t.test(D$variable, D$pair, paired = TRUE)
mi.t.test(res$imputations, x = "variable", y = "pair", paired = TRUE)

mod.oneway.test Moderated 1-Way ANOVA

Description

Performs moderated 1-Way ANOVAs based on Bioconductor package limma.

Usage

mod.oneway.test(x, group, adjust.method = "BH", sort.by = "none")

Arguments

x a (non-empty) numeric matrix of data values.
group an optional factor representing the groups.
adjust.method see p.adjust

sort.by see toptable

, where "logFC" corresponds to difference in means.

Details

The function uses Bioconductor package limma to compute moderated 1-way ANOVAs. For more
details we refer to ebayes.

Value

A data.frame with the results.

References

B. Phipson, S. Lee, I.J. Majewski, W.S. Alexander, G.H. Smyth (2016). Robust hyperparameter es-
timation protects against hypervariable genes and improves power to detect differential expression.
Annals of Applied Statistics 10(2), 946-963.

mod.t.test 31

See Also

oneway.test, mod.t.test

Examples

set.seed(123)
X <- rbind(matrix(rnorm(5*20), nrow = 5, ncol = 20),

matrix(rnorm(5*20, mean = 1), nrow = 5, ncol = 20))
gr <- factor(c(rep("A1", 5), rep("B2", 5), rep("C3", 5), rep("D4", 5)))
mod.oneway.test(X, gr)

Welch 1-Way ANOVA (not moderated)
ow.test <- function(x, g){

res <- oneway.test(x ~ g)
c(res$statistic, res$p.value)

}
ow.res <- t(apply(X, 1, ow.test, g = gr))
colnames(ow.res) <- c("F", "p.value")
ow.res

mod.t.test Moderated t-Test

Description

Performs moderated t-tests based on Bioconductor package limma.

Usage

mod.t.test(x, group = NULL, paired = FALSE, adjust.method = "BH",
sort.by = "none")

Arguments

x a (non-empty) numeric matrix of data values.

group an optional factor representing the groups.

paired a logical indicating whether you want a paired test.

adjust.method see p.adjust

sort.by see toptable

, where "logFC" corresponds to difference in means.

Details

The function uses Bioconductor package limma to compute moderated t-tests. For more details we
refer to ebayes.

32 mod.t.test

Value

A data.frame with the results.

References

B. Phipson, S. Lee, I.J. Majewski, W.S. Alexander, G.H. Smyth (2016). Robust hyperparameter es-
timation protects against hypervariable genes and improves power to detect differential expression.
Annals of Applied Statistics 10(2), 946-963.

See Also

t.test

Examples

One-sample test
X <- matrix(rnorm(10*20, mean = 1), nrow = 10, ncol = 20)

mod.t.test(X)
corresponds to
library(limma)
design <- matrix(1, nrow = ncol(X), ncol = 1)
colnames(design) <- "A"
fit1 <- lmFit(X, design)
fit2 <- eBayes(fit1)
topTable(fit2, coef = 1, number = Inf, confint = TRUE, sort.by = "none")[,-4]

Two-sample test
set.seed(123)
X <- rbind(matrix(rnorm(5*20), nrow = 5, ncol = 20),

matrix(rnorm(5*20, mean = 1), nrow = 5, ncol = 20))
g2 <- factor(c(rep("group 1", 10), rep("group 2", 10)))

mod.t.test(X, group = g2)
corresponds to
design <- model.matrix(~ 0 + g2)
colnames(design) <- c("group1", "group2")
fit1 <- lmFit(X, design)
cont.matrix <- makeContrasts(group1vsgroup2="group1-group2", levels=design)
fit2 <- contrasts.fit(fit1, cont.matrix)
fit3 <- eBayes(fit2)
topTable(fit3, coef = 1, number = Inf, confint = TRUE, sort.by = "none")[,-4]

Paired two-sample test
mod.t.test(X, group = g2, paired = TRUE)

normCI 33

normCI Confidence Intervals for Mean and Standard Deviation

Description

This function can be used to compute confidence intervals for mean and standard deviation of a
normal distribution.

Usage

normCI(x, mean = NULL, sd = NULL, conf.level = 0.95, na.rm = TRUE)

Arguments

x vector of observations.

mean mean if known otherwise NULL.

sd standard deviation if known otherwise NULL.

conf.level confidence level.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

Details

The standard confidence intervals for mean and standard deviation are computed that can be found
in many textbooks, e.g. Chapter 4 in Altman et al. (2000).

Value

A list with class "confint" containing the following components:

estimate the estimated mean and sd.

conf.int confidence interval(s) for mean and/or sd.

Infos additional information.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

D. Altman, D. Machin, T. Bryant, M. Gardner (eds). Statistics with Confidence: Confidence Inter-
vals and Statistical Guidelines, 2nd edition 2000.

34 normDiffCI

Examples

x <- rnorm(50)
mean and sd unknown
normCI(x)
sd known
normCI(x, sd = 1)
mean known
normCI(x, mean = 0)

normDiffCI Confidence Intervals for Difference of Means

Description

This function can be used to compute confidence intervals for difference of means assuming normal
distributions.

Usage

normDiffCI(x, y, conf.level = 0.95, paired = FALSE, method = "welch", na.rm = TRUE)

Arguments

x numeric vector of data values of group 1.
y numeric vector of data values of group 2.
conf.level confidence level.
paired a logical value indicating whether the two groups are paired.
method a character string specifing which method to use in the unpaired case; see details.
na.rm a logical value indicating whether NA values should be stripped before the com-

putation proceeds.

Details

The standard confidence intervals for the difference of means are computed that can be found in
many textbooks, e.g. Chapter 4 in Altman et al. (2000).

The method "classical" assumes equal variances whereas methods "welch" and "hsu" allow
for unequal variances. The latter two methods use different formulas for computing the degrees of
freedom of the respective t-distribution providing the quantiles in the confidence interval. Instead
of the Welch-Satterhwaite equation the method of Hsu uses the minimum of the group sample sizes
minus 1; see Section 6.8.3 of Hedderich and Sachs (2016).

Value

A list with class "confint" containing the following components:

estimate point estimate (mean of differences or difference in means).
conf.int confidence interval.
Infos additional information.

normDiffCI 35

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

D. Altman, D. Machin, T. Bryant, M. Gardner (eds). Statistics with Confidence: Confidence Inter-
vals and Statistical Guidelines, 2nd edition. John Wiley and Sons 2000.

J. Hedderich, L. Sachs. Angewandte Statistik: Methodensammlung mit R. Springer 2016.

Examples

x <- rnorm(20)
y <- rnorm(20, sd = 2)
paired
normDiffCI(x, y, paired = TRUE)
compare
normCI(x-y)

unpaired
y <- rnorm(10, mean = 1, sd = 2)
classical
normDiffCI(x, y, method = "classical")
Welch (default is in case of function t.test)
normDiffCI(x, y, method = "welch")
Hsu
normDiffCI(x, y, method = "hsu")

Monte-Carlo simulation: coverage probability
M <- 10000
CIhsu <- CIwelch <- CIclass <- matrix(NA, nrow = M, ncol = 2)
for(i in 1:M){

x <- rnorm(10)
y <- rnorm(30, sd = 0.1)
CIclass[i,] <- normDiffCI(x, y, method = "classical")$conf.int
CIwelch[i,] <- normDiffCI(x, y, method = "welch")$conf.int
CIhsu[i,] <- normDiffCI(x, y, method = "hsu")$conf.int

}
coverage probabilies
classical
sum(CIclass[,1] < 0 & 0 < CIclass[,2])/M
Welch
sum(CIwelch[,1] < 0 & 0 < CIwelch[,2])/M
Hsu
sum(CIhsu[,1] < 0 & 0 < CIhsu[,2])/M

36 oneWayAnova

oneWayAnova A function for Analysis of Variance

Description

This function is a slight modification of function Anova of package "genefilter".

Usage

oneWayAnova(cov, na.rm = TRUE, var.equal = FALSE)

Arguments

cov The covariate. It must have length equal to the number of columns of the array
that the result of oneWayAnova will be applied to.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

var.equal a logical variable indicating whether to treat the variances in the samples as
equal. If TRUE, then a simple F test for the equality of means in a one-way
analysis of variance is performed. If FALSE, an approximate method of Welch
(1951) is used, which generalizes the commonly known 2-sample Welch test to
the case of arbitrarily many samples.

Details

The function returned by oneWayAnova uses oneway.test to perform a one-way ANOVA, where x
is the set of gene expressions. The F statistic for an overall effect is computed and the corresponding
p-value is returned.

The function Anova instead compares the computed p-value to a prespecified p-value and returns
TRUE, if the computed p-value is smaller than the prespecified one.

Value

oneWayAnova returns a function with bindings for cov that will perform a one-way ANOVA.

The covariate can be continuous, in which case the test is for a linear effect for the covariate.

Note

A first version of this function appeared in package SLmisc.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

R. Gentleman, V. Carey, W. Huber and F. Hahne (2006). genefilter: methods for filtering genes
from microarray experiments. R package version 1.13.7.

optCutoff 37

See Also

oneway.test, Anova

Examples

set.seed(123)
af <- oneWayAnova(c(rep(1,5),rep(2,5)))
af(rnorm(10))

optCutoff Compute the Optimal Cutoff for Binary Classification

Description

The function computes the optimal cutoff for various performance weasures for binary classifica-
tion.

Usage

optCutoff(pred, truth, namePos, perfMeasure = "Youden's J statistic",
max = TRUE, parallel = FALSE, ncores, delta = 0.01)

Arguments

pred numeric values that shall be used for classification; e.g. probabilities to belong
to the positive group.

truth true grouping vector or factor.

namePos value representing the positive group.

perfMeasure a performance measure computed by function perfMeasure.

max logical value. Whether to maximize or minimize the performacne measure.

parallel logical value. If TRUE packages foreach and doParallel are used to parallelize
the computations.

ncores integer value, number of cores that shall be used to parallelize the computations.

delta numeric value for setting up grid for optimization; start is minimum of pred-delta,
end is maximum of pred+delta.

Details

The function is ablte to compute the optimal cutoff for various performance measures, all perfor-
mance measures that are implemented in function perfMeasures.

Value

Optimal cutoff and value of the optimized performance measure based on a simple grid search.

38 or2rr

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

Examples

example from dataset infert
fit <- glm(case ~ spontaneous+induced, data = infert, family = binomial())
pred <- predict(fit, type = "response")
optCutoff(pred, truth = infert$case, namePos = 1)

or2rr Transform OR to RR

Description

The function transforms a given odds-ratio (OR) to the respective relative risk (RR).

Usage

or2rr(or, p0, p1)

Arguments

or numeric vector: OR (odds-ratio).

p0 numeric vector of length 1: incidence of the outcome of interest in the nonex-
posed group.

p1 numeric vector of length 1: incidence of the outcome of interest in the exposed
group.

Details

The function transforms a given odds-ratio (OR) to the respective relative risk (RR). It can also be
used to transform the limits of confidence intervals.

The formulas can be derived by combining the formulas for RR and OR; see also Zhang and Yu
(1998).

Value

relative risk.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Zhang, J. and Yu, K. F. (1998). What’s the relative risk? A method of correcting the odds ratio in
cohort studies of common outcomes. JAMA, 280(19):1690-1691.

pairwise.auc 39

Examples

We use data from Zhang and Yu (1998)

OR to RR using OR and p0
or2rr(14.1, 0.05)

compute p1
or2rr(14.1, 0.05)*0.05

OR to RR using OR and p1
or2rr(14.1, p1 = 0.426)

OR and 95% confidence interval
or2rr(c(14.1, 7.8, 27.5), 0.05)

Logistic OR and 95% confidence interval
logisticOR <- rbind(c(14.1, 7.8, 27.5),

c(8.7, 5.5, 14.3),
c(27.4, 17.2, 45.8),
c(4.5, 2.7, 7.8),
c(0.25, 0.17, 0.37),
c(0.09, 0.05, 0.14))

colnames(logisticOR) <- c("OR", "2.5%", "97.5%")
rownames(logisticOR) <- c("7.4", "4.2", "3.0", "2.0", "0.37", "0.14")
logisticOR

p0
p0 <- c(0.05, 0.12, 0.32, 0.27, 0.40, 0.40)

Compute corrected RR
helper function
or2rr.mat <- function(or, p0){

res <- matrix(NA, nrow = nrow(or), ncol = ncol(or))
for(i in seq_len(nrow(or)))
res[i,] <- or2rr(or[i,], p0[i])

dimnames(res) <- dimnames(or)
res

}
RR <- or2rr.mat(logisticOR, p0)
round(RR, 2)

Results are not completely identical to Zhang and Yu (1998)
what probably is caused by the fact that the logistic OR values
provided in the table are rounded and are not exact values.

pairwise.auc Compute pairwise AUCs

Description

The function computes pairwise AUCs.

40 pairwise.fc

Usage

pairwise.auc(x, g)

Arguments

x numeric vector.

g grouping vector or factor

Details

The function computes pairwise areas under the receiver operating characteristic curves (AUC under
ROC curves) using function AUC.

The implementation is in certain aspects analogously to pairwise.t.test.

Value

Vector with pairwise AUCs.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

AUC, pairwise.t.test

Examples

set.seed(13)
x <- rnorm(100)
g <- factor(sample(1:4, 100, replace = TRUE))
levels(g) <- c("a", "b", "c", "d")
pairwise.auc(x, g)

pairwise.fc Compute pairwise fold changes

Description

This function computes pairwise fold changes. It also works for logarithmic data.

Usage

pairwise.fc(x, g, ave = mean, log = TRUE, base = 2, mod.fc = TRUE, ...)

pairwise.fc 41

Arguments

x numeric vector.

g grouping vector or factor

ave function to compute the group averages.

log logical. Is the data logarithmic?

base If log = TRUE, the base which was used to compute the logarithms.

mod.fc logical. Return modified fold changes? (see details)

... optional arguments to ave.

Details

The function computes pairwise fold changes between groups, where the group values are aggre-
gated using the function which is given by the argument ave.

The fold changes are returned in a slightly modified form if mod.fc = TRUE. Fold changes FC which
are smaller than 1 are reported as to -1/FC.

The implementation is in certain aspects analogously to pairwise.t.test.

Value

Vector with pairwise fold changes.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

pairwise.t.test

Examples

set.seed(13)
x <- rnorm(100) ## assumed as log2-data
g <- factor(sample(1:4, 100, replace = TRUE))
levels(g) <- c("a", "b", "c", "d")
pairwise.fc(x, g)

some small checks
res <- by(x, list(g), mean)
2^(res[[1]] - res[[2]]) # a vs. b
-1/2^(res[[1]] - res[[3]]) # a vs. c
2^(res[[1]] - res[[4]]) # a vs. d
-1/2^(res[[2]] - res[[3]]) # b vs. c
-1/2^(res[[2]] - res[[4]]) # b vs. d
2^(res[[3]] - res[[4]]) # c vs. d

42 pairwise.fun

pairwise.fun Compute pairwise values for a given function

Description

The function computes pairwise values for a given function.

Usage

pairwise.fun(x, g, fun, ...)

Arguments

x numeric vector.

g grouping vector or factor

fun some function where the first two arguments have to be numeric vectors for
which the function computes some quantity; see example section below.

... additional arguments to fun.

Details

The function computes pairwise values for a given function.

The implementation is in certain aspects analogously to pairwise.t.test.

Value

Vector with pairwise function values.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

pairwise.t.test, pairwise.fc, pairwise.logfc, pairwise.auc

Examples

set.seed(13)
x <- rnorm(100)
g <- factor(sample(1:4, 100, replace = TRUE))
levels(g) <- c("a", "b", "c", "d")
pairwise.fun(x, g, fun = function(x, y) t.test(x,y)$p.value)
in contrast to
pairwise.t.test(x, g, p.adjust.method = "none", pool.sd = FALSE)

pairwise.logfc 43

pairwise.logfc Compute pairwise log-fold changes

Description

The function computes pairwise log-fold changes.

Usage

pairwise.logfc(x, g, ave = mean, log = TRUE, base = 2, ...)

Arguments

x numeric vector.

g grouping vector or factor

ave function to compute the group averages.

log logical. Is the data logarithmic?

base If log = TRUE, the base which was used to compute the logarithms.

... optional arguments to ave.

Details

The function computes pairwise log-fold changes between groups, where the group values are ag-
gregated using the function which is given by the argument ave.

The implementation is in certain aspects analogously to pairwise.t.test.

Value

Vector with pairwise log-fold changes.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

pairwise.t.test

Examples

set.seed(13)
x <- rnorm(100) ## assumed as log2-data
g <- factor(sample(1:4, 100, replace = TRUE))
levels(g) <- c("a", "b", "c", "d")
pairwise.logfc(x, g)

some small checks

44 pairwise.mod.t.test

res <- by(x, list(g), mean)
res[[1]] - res[[2]] # a vs. b
res[[1]] - res[[3]] # a vs. c
res[[1]] - res[[4]] # a vs. d
res[[2]] - res[[3]] # b vs. c
res[[2]] - res[[4]] # b vs. d
res[[3]] - res[[4]] # c vs. d

pairwise.mod.t.test Pairwise Moderated t-Tests

Description

Performs pairwise moderated t-tests based on Bioconductor package limma.

Usage

pairwise.mod.t.test(x, group, adjust.method = "BH", sort.by = "none")

Arguments

x a (non-empty) numeric matrix of data values.

group an optional factor representing the groups.

adjust.method see p.adjust

sort.by see toptable

, where "logFC" corresponds to difference in means.

Details

The function uses Bioconductor package limma to compute pairwise moderated t-tests. For more
details we refer to ebayes.

Value

A data.frame with the results.

References

B. Phipson, S. Lee, I.J. Majewski, W.S. Alexander, G.H. Smyth (2016). Robust hyperparameter es-
timation protects against hypervariable genes and improves power to detect differential expression.
Annals of Applied Statistics 10(2), 946-963.

See Also

oneway.test, mod.t.test

perfMeasures 45

Examples

set.seed(123)
X <- rbind(matrix(rnorm(5*20), nrow = 5, ncol = 20),

matrix(rnorm(5*20, mean = 1), nrow = 5, ncol = 20))
gr <- factor(c(rep("A1", 5), rep("B2", 5), rep("C3", 5), rep("D4", 5)))
mod.oneway.test(X, gr)
pairwise.mod.t.test(X, gr)

perfMeasures Compute Performance Measures and Scores for Binary Classification

Description

The function computes various performance weasures and scores for binary classification.

Usage

perfMeasures(pred, pred.group, truth, namePos, cutoff = 0.5,
weight = 0.5, wACC = weight, wPV = weight)

perfScores(pred, truth, namePos, weight = 0.5, wBS = weight)

Arguments

pred numeric values that shall be used for classification; e.g. probabilities to belong
to the positive group.

pred.group vector or factor including the predicted group. If missing, pred.group is com-
puted from pred, where pred >= cutoff is classified as positive.

truth true grouping vector or factor.

namePos value representing the positive group.

cutoff cutoff value used for classification.

weight weight used for computing weighted values. Must be in [0,1].

wACC weight used for computing the weighted accuracy. Must be in [0,1].

wPV weight used for computing the weighted predictive value. Must be in [0,1].

wBS weight used for computing the weighted Brier score. Must be in [0,1].

Details

The function perfMeasures computes various performance measures. The measures are: accuracy
(ACC), probabiliy of correct classification (PCC), probability of missclassification (PMC), error
rate, sensitivity, specificity, prevalence, no information rate, weighted accuracy (wACC), balanced
accuracy (BACC), informedness, Youden’s J statistic, positive likelihood ratio (PLR), negative like-
lihood ratio (NLR), positive predictive value (PPV), negative predictive value (NPV), markedness,
weighted predictive value, balanced predictive value, F1 score, Matthews’ correlation coefficient
(MCC), proportion of positive predictions, expected accuracy, Cohen’s kappa coefficient, and de-
tection rate.

46 perfMeasures

These performance measures have in common that they require a dichotomization (discretization)
of a computed continuous classification function.

The function perfScores computes various performance Scores. The scores are: area under the
ROC curve (AUC), Gini index, Brier score, positive Brier score, negative Brier score, weighted
Brier score, and balanced Brier score.

If the predictions (pred) are not in the interval [0,1] the standard logistic function is applied to
transform the values of pred - cutoff to [0,1].

Value

data.frame with names of the performance measures, respectivey scores and their respective val-
ues.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

G.W. Brier (1950). Verification of forecasts expressed in terms of probability. Mon. Wea. Rev. 78,
1-3.

K.H. Brodersen, C.S. Ong, K.E. Stephan, J.M. Buhmann (2010). The balanced accuracy and its
posterior distribution. In Pattern Recognition (ICPR), 20th International Conference on, 3121-3124
(IEEE, 2010).

J.A. Cohen (1960). A coefficient of agreement for nominal scales. Educational and Psychological
Measurement 20, 3746.

T. Fawcett (2006). An introduction to ROC analysis. Pattern Recognition Letters 27, 861-874.

T.A. Gerds, T. Cai, M. Schumacher (2008). The performance of risk prediction models. Biom J 50,
457-479.

D. Hand, R. Till (2001). A simple generalisation of the area under the ROC curve for multiple class
classification problems. Machine Learning 45, 171-186.

J. Hernandez-Orallo, P.A. Flach, C. Ferri (2011). Brier curves: a new cost- based visualisation of
classifier performance. In L. Getoor and T. Scheffer (eds.) Proceedings of the 28th International
Conference on Machine Learning (ICML-11), 585???592 (ACM, New York, NY, USA).

J. Hernandez-Orallo, P.A. Flach, C. Ferri (2012). A unified view of performance metrics: Translat-
ing threshold choice into expected classification loss. J. Mach. Learn. Res. 13, 2813-2869.

B.W. Matthews (1975). Comparison of the predicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure 405, 442-451.

D.M. Powers (2011). Evaluation: From Precision, Recall and F-Factor to ROC, Informedness,
Markedness and Correlation. Journal of Machine Learning Technologies 1, 37-63.

N.A. Smits (2010). A note on Youden’s J and its cost ratio. BMC Medical Research Methodology
10, 89.

B. Wallace, I. Dahabreh (2012). Class probability estimates are unreliable for imbalanced data (and
how to fix them). In Data Mining (ICDM), IEEE 12th International Conference on, 695-04.

J.W. Youden (1950). Index for rating diagnostic tests. Cancer 3, 32-35.

power.diagnostic.test 47

Examples

example from dataset infert
fit <- glm(case ~ spontaneous+induced, data = infert, family = binomial())
pred <- predict(fit, type = "response")

with group numbers
perfMeasures(pred, truth = infert$case, namePos = 1)
perfScores(pred, truth = infert$case, namePos = 1)

with group names
my.case <- factor(infert$case, labels = c("control", "case"))
perfMeasures(pred, truth = my.case, namePos = "case")
perfScores(pred, truth = my.case, namePos = "case")

on the scale of the linear predictors
pred2 <- predict(fit)
perfMeasures(pred2, truth = infert$case, namePos = 1, cutoff = 0)
perfScores(pred2, truth = infert$case, namePos = 1)

using weights
perfMeasures(pred, truth = infert$case, namePos = 1, weight = 0.3)
perfScores(pred, truth = infert$case, namePos = 1, weight = 0.3)

power.diagnostic.test Power calculations for a diagnostic test

Description

Compute sample size, power, delta, or significance level of a diagnostic test for an expected sensi-
titivy or specificity.

Usage

power.diagnostic.test(sens = NULL, spec = NULL,
n = NULL, delta = NULL, sig.level = 0.05,
power = NULL, prev = NULL,
method = c("exact", "asymptotic"),
NMAX = 1e4)

Arguments

sens Expected sensitivity; either sens or spec has to be specified.

spec Expected specificity; either sens or spec has to be specified.

n Number of cases if sens and number of controls if spec is given.

delta sens-delta resp. spec-delta is used as lower confidence limit

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

48 power.diagnostic.test

prev Expected prevalence, if NULL prevalence is ignored which means prev = 0.5 is
assumed.

method exact or asymptotic formula; default "exact".

NMAX Maximum sample size considered in case method = "exact".

Details

Either sens or spec has to be specified which leads to computations for either cases or controls.

Exactly one of the parameters n, delta, sig.level, and power must be passed as NULL, and that
parameter is determined from the others. Notice that sig.level has a non-NULL default so NULL
must be explicitly passed if you want to compute it.

The computations are based on the formulas given in the Appendix of Flahault et al. (2005). Please
be careful, in Equation (A1) the numerator should be squared, in equation (A2) and (A3) the second
exponent should be n-i and not i.

As noted in Chu and Cole (2007) power is not a monotonically increasing function in n but rather
saw toothed (see also Chernick and Liu (2002)). Hence, in our calculations we use the more con-
servative approach II); i.e., the minimum sample size n such that the actual power is larger or equal
power andsuch that for any sample size larger than n it also holds that the actual power is larger or
equal power.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

A. Flahault, M. Cadilhac, and G. Thomas (2005). Sample size calculation should be performed for
design accuracy in diagnostic test studies. Journal of Clinical Epidemiology, 58(8):859-862.

H. Chu and S.R. Cole (2007). Sample size calculation using exact methods in diagnostic test studies.
Journal of Clinical Epidemiology, 60(11):1201-1202.

M.R. Chernick amd C.Y. Liu (2002). The saw-toothed behavior of power versus sample size and
software solutions: single binomial proportion using exact methods. Am Stat, 56:149-155.

See Also

uniroot

power.hsu.t.test 49

Examples

see n2 on page 1202 of Chu and Cole (2007)
power.diagnostic.test(sens = 0.99, delta = 0.14, power = 0.95) # 40
power.diagnostic.test(sens = 0.99, delta = 0.13, power = 0.95) # 43
power.diagnostic.test(sens = 0.99, delta = 0.12, power = 0.95) # 47

power.diagnostic.test(sens = 0.98, delta = 0.13, power = 0.95) # 50
power.diagnostic.test(sens = 0.98, delta = 0.11, power = 0.95) # 58

see page 1201 of Chu and Cole (2007)
power.diagnostic.test(sens = 0.95, delta = 0.1, n = 93) ## 0.957
power.diagnostic.test(sens = 0.95, delta = 0.1, n = 93, power = 0.95,

sig.level = NULL) ## 0.0496
power.diagnostic.test(sens = 0.95, delta = 0.1, n = 102) ## 0.968
power.diagnostic.test(sens = 0.95, delta = 0.1, n = 102, power = 0.95,

sig.level = NULL) ## 0.0471
yields 102 not 93!
power.diagnostic.test(sens = 0.95, delta = 0.1, power = 0.95)

power.hsu.t.test Power calculations for two sample Hsu t test

Description

Compute the power of the two-sample Hsu t test, or determine parameters to obtain a target power;
see Section 7.4.4 in Hedderich and Sachs (2016),

Usage

power.hsu.t.test(n = NULL, delta = NULL, sd1 = 1, sd2 = 1, sig.level = 0.05,
power = NULL, alternative = c("two.sided", "one.sided"),
strict = FALSE, tol = .Machine$double.eps^0.25)

Arguments

n number of observations (per group)

delta (expected) true difference in means

sd1 (expected) standard deviation of group 1

sd2 (expected) standard deviation of group 2

sig.level significance level (Type I error probability)

power power of test (1 minus Type II error probability)

alternative one- or two-sided test. Can be abbreviated.

strict use strict interpretation in two-sided case

tol numerical tolerance used in root finding, the default providing (at least) four
significant digits.

50 power.hsu.t.test

Details

Exactly one of the parameters n, delta, power, sd1, sd2 and sig.level must be passed as NULL,
and that parameter is determined from the others. Notice that the last three have non-NULL defaults,
so NULL must be explicitly passed if you want to compute them.

If strict = TRUE is used, the power will include the probability of rejection in the opposite direction
of the true effect, in the two-sided case. Without this the power will be half the significance level if
the true difference is zero.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

The function and its documentation was adapted from power.t.test implemented by Peter Dal-
gaard and based on previous work by Claus Ekstroem.

uniroot is used to solve the power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

J. Hedderich, L. Sachs. Angewandte Statistik: Methodensammlung mit R. Springer 2016.

See Also

power.welch.t.test, power.t.test, t.test, uniroot

Examples

more conservative than classical or Welch t-test
power.hsu.t.test(n = 20, delta = 1)
power.hsu.t.test(power = .90, delta = 1)
power.hsu.t.test(power = .90, delta = 1, alternative = "one.sided")

sd1 = 0.5, sd2 = 1
power.welch.t.test(delta = 0.5, sd1 = 0.5, sd2 = 1, power = 0.9)
power.hsu.t.test(delta = 0.5, sd1 = 0.5, sd2 = 1, power = 0.9)

empirical check
M <- 10000
ps <- numeric(M)
for(i in seq_len(M)){
x <- rnorm(55, mean = 0, sd = 0.5)
y <- rnorm(55, mean = 0.5, sd = 1.0)

power.nb.test 51

ps[i] <- hsu.t.test(x, y)$p.value
}
empirical power
sum(ps < 0.05)/M

power.nb.test Power calculation for comparing two negative binomial rates

Description

Compute sample size or power for comparing two negative binomial rates.

Usage

power.nb.test(n = NULL, mu0, mu1, RR, duration = 1, theta, ssize.ratio = 1,
sig.level = 0.05, power = NULL, alternative = c("two.sided", "one.sided"),

approach = 3)

Arguments

n Sample size for group 0 (control group).

mu0 expected rate of events per time unit for group 0

mu1 expected rate of events per time unit for group 1

RR ratio of expected event rates: mu1/mu0

duration (average) treatment duration

theta theta parameter of negative binomial distribution; see rnegbin

ssize.ratio ratio of sample sizes: n/n1 where n1 is sample size of group 1

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

alternative one- or two-sided test

approach 1, 2, or 3; see Zhu and Lakkis (2014).

Details

Exactly one of the parameters n and power must be passed as NULL, and that parameter is determined
from the other.

The computations are based on the formulas given in Zhu and Lakkis (2014). Please be careful, as
we are using a slightly different parametrization (theta = 1/k).

Zhu and Lakkis (2014) based on their simulation studies recommend to use their approach 2 or 3.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with a note element.

52 power.nb.test

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

H. Zhu and H. Lakkis (2014). Sample size calculation for comparing two negative binomial rates.
Statistics in Medicine, 33:376-387.

See Also

rnegbin, glm.nb

Examples

examples from Table I in Zhu and Lakkis (2014)
theta = 1/k, RR = rr, mu0 = r0, duration = mu_t
power.nb.test(mu0 = 0.8, RR = 0.85, theta = 1/0.4, duration = 0.75, power = 0.8, approach = 1)
power.nb.test(mu0 = 0.8, RR = 0.85, theta = 1/0.4, duration = 0.75, power = 0.8, approach = 2)
power.nb.test(mu0 = 0.8, RR = 0.85, theta = 1/0.4, duration = 0.75, power = 0.8, approach = 3)

power.nb.test(mu0 = 1.4, RR = 1.15, theta = 1/1.5, duration = 0.75, power = 0.8, approach = 1)
power.nb.test(mu0 = 1.4, RR = 1.15, theta = 1/1.5, duration = 0.75, power = 0.8, approach = 2)
power.nb.test(mu0 = 1.4, RR = 1.15, theta = 1/1.5, duration = 0.75, power = 0.8, approach = 3)

examples from Table II in Zhu and Lakkis (2014) - seem to be total sample sizes
can reproduce the results with mu_t = 1.0 (not 0.7!)
power.nb.test(mu0 = 2.0, RR = 0.5, theta = 1, duration = 1.0, ssize.ratio = 1,

power = 0.8, approach = 1)
power.nb.test(mu0 = 2.0, RR = 0.5, theta = 1, duration = 1.0, ssize.ratio = 1,

power = 0.8, approach = 2)
power.nb.test(mu0 = 2.0, RR = 0.5, theta = 1, duration = 1.0, ssize.ratio = 1,

power = 0.8, approach = 3)

power.nb.test(mu0 = 10.0, RR = 1.5, theta = 1/5, duration = 1.0, ssize.ratio = 3/2,
power = 0.8, approach = 1)

power.nb.test(mu0 = 10.0, RR = 1.5, theta = 1/5, duration = 1.0, ssize.ratio = 3/2,
power = 0.8, approach = 2)

power.nb.test(mu0 = 10.0, RR = 1.5, theta = 1/5, duration = 1.0, ssize.ratio = 3/2,
power = 0.8, approach = 3)

examples from Table III in Zhu and Lakkis (2014)
power.nb.test(mu0 = 5.0, RR = 2.0, theta = 1/0.5, duration = 1, power = 0.8, approach = 1)
power.nb.test(mu0 = 5.0, RR = 2.0, theta = 1/0.5, duration = 1, power = 0.8, approach = 2)
power.nb.test(mu0 = 5.0, RR = 2.0, theta = 1/0.5, duration = 1, power = 0.8, approach = 3)

examples from Table IV in Zhu and Lakkis (2014)
power.nb.test(mu0 = 5.9/3, RR = 0.4, theta = 0.49, duration = 3, power = 0.9, approach = 1)
power.nb.test(mu0 = 5.9/3, RR = 0.4, theta = 0.49, duration = 3, power = 0.9, approach = 2)
power.nb.test(mu0 = 5.9/3, RR = 0.4, theta = 0.49, duration = 3, power = 0.9, approach = 3)

power.welch.t.test 53

power.nb.test(mu0 = 13/6, RR = 0.2, theta = 0.52, duration = 6, power = 0.9, approach = 1)
power.nb.test(mu0 = 13/6, RR = 0.2, theta = 0.52, duration = 6, power = 0.9, approach = 2)
power.nb.test(mu0 = 13/6, RR = 0.2, theta = 0.52, duration = 6, power = 0.9, approach = 3)

see Section 5 of Zhu and Lakkis (2014)
power.nb.test(mu0 = 0.66, RR = 0.8, theta = 1/0.8, duration = 0.9, power = 0.9)

power.welch.t.test Power calculations for two sample Welch t test

Description

Compute the power of the two-sample Welch t test, or determine parameters to obtain a target
power.

Usage

power.welch.t.test(n = NULL, delta = NULL, sd1 = 1, sd2 = 1, sig.level = 0.05,
power = NULL, alternative = c("two.sided", "one.sided"),
strict = FALSE, tol = .Machine$double.eps^0.25)

Arguments

n number of observations (per group)

delta (expected) true difference in means

sd1 (expected) standard deviation of group 1

sd2 (expected) standard deviation of group 2

sig.level significance level (Type I error probability)

power power of test (1 minus Type II error probability)

alternative one- or two-sided test. Can be abbreviated.

strict use strict interpretation in two-sided case

tol numerical tolerance used in root finding, the default providing (at least) four
significant digits.

Details

Exactly one of the parameters n, delta, power, sd1, sd2 and sig.level must be passed as NULL,
and that parameter is determined from the others. Notice that the last three have non-NULL defaults,
so NULL must be explicitly passed if you want to compute them.

If strict = TRUE is used, the power will include the probability of rejection in the opposite direction
of the true effect, in the two-sided case. Without this the power will be half the significance level if
the true difference is zero.

54 power.welch.t.test

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

The function and its documentation was adapted from power.t.test implemented by Peter Dal-
gaard and based on previous work by Claus Ekstroem.

uniroot is used to solve the power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

S.L. Jan and G. Shieh (2011). Optimal sample sizes for Welch’s test under various allocation and
cost considerations. Behav Res Methods, 43, 4:1014-22.

See Also

power.t.test, t.test, uniroot

Examples

identical results as power.t.test, since sd = sd1 = sd2 = 1
power.welch.t.test(n = 20, delta = 1)
power.welch.t.test(power = .90, delta = 1)
power.welch.t.test(power = .90, delta = 1, alternative = "one.sided")

sd1 = 0.5, sd2 = 1
power.welch.t.test(delta = 1, sd1 = 0.5, sd2 = 1, power = 0.9)

empirical check
M <- 10000
ps <- numeric(M)
for(i in seq_len(M)){
x <- rnorm(15, mean = 0, sd = 0.5)
y <- rnorm(15, mean = 1, sd = 1.0)
ps[i] <- t.test(x, y)$p.value

}
empirical power
sum(ps < 0.05)/M

predValues 55

predValues Compute PPV and NPV.

Description

The function computes the positive (PPV) and negative predictive value (NPV) given sensitivity,
specificity and prevalence (pre-test probability).

Usage

predValues(sens, spec, prev)

Arguments

sens numeric vector: sensitivities.
spec numeric vector: specificities.
prev numeric vector: prevalence.

Details

The function computes the positive (PPV) and negative predictive value (NPV) given sensitivity,
specificity and prevalence (pre-test probability).

It’s a simple application of the Bayes formula.

One can also specify vectors of length larger than 1 for sensitivity and specificity.

Value

Vector or matrix with PPV and NPV.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

Examples

Example: HIV test
1. ELISA screening test (4th generation)
predValues(sens = 0.999, spec = 0.998, prev = 0.001)
2. Western-Plot confirmation test
predValues(sens = 0.998, spec = 0.999996, prev = 1/3)

Example: connection between sensitivity, specificity and PPV
sens <- seq(0.6, 0.99, by = 0.01)
spec <- seq(0.6, 0.99, by = 0.01)
ppv <- function(sens, spec, pre) predValues(sens, spec, pre)[,1]
res <- outer(sens, spec, ppv, pre = 0.1)
image(sens, spec, res, col = terrain.colors(256), main = "PPV for prevalence = 10%",

xlim = c(0.59, 1), ylim = c(0.59, 1))
contour(sens, spec, res, add = TRUE)

56 print.confint

print.confint Print Method for Confidence Intervals

Description

Printing objects of class "confint" by a simple print method.

Usage

S3 method for class 'confint'
print(x, digits = getOption("digits"), prefix = "\t", ...)

Arguments

x object of class "confint".

digits number of significant digits to be used.

prefix string, passed to strwrap for displaying the method component of the mpe.test
object.

... further arguments to be passed to or from methods.

Details

A confint object is just a named list of confidence intervals and respective (point) estimates.

Value

the argument x, invisibly, as for all print methods.

See Also

print.power.htest

Examples

x <- rnorm(20)
(CI <- normCI(x))
print(CI, digits = 3)

qboxplot 57

qboxplot Box Plots

Description

Produce box-and-whisker plot(s) of the given (grouped) values. In contrast to boxplot quartiles
are used instead of hinges (which are not necessarily quartiles) the rest of the implementation is
identical to boxplot.

Usage

qboxplot(x, ...)

S3 method for class 'formula'
qboxplot(formula, data = NULL, ..., subset, na.action = NULL, type = 7)

Default S3 method:
qboxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,

notch = FALSE, outline = TRUE, names, plot = TRUE,
border = par("fg"), col = NULL, log = "",
pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5),
horizontal = FALSE, add = FALSE, at = NULL, type = 7)

Arguments

formula a formula, such as y ~ grp, where y is a numeric vector of data values to be split
into groups according to the grouping variable grp (usually a factor).

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data contain NAs. The
default is to ignore missing values in either the response or the group.

x for specifying data from which the boxplots are to be produced. Either a numeric
vector, or a single list containing such vectors. Additional unnamed arguments
specify further data as separate vectors (each corresponding to a component
boxplot). NAs are allowed in the data.

... For the formula method, named arguments to be passed to the default method.
For the default method, unnamed arguments are additional data vectors (unless x
is a list when they are ignored), and named arguments are arguments and graph-
ical parameters to be passed to bxp in addition to the ones given by argument
pars (and override those in pars).

range this determines how far the plot whiskers extend out from the box. If range is
positive, the whiskers extend to the most extreme data point which is no more
than range times the interquartile range from the box. A value of zero causes
the whiskers to extend to the data extremes.

width a vector giving the relative widths of the boxes making up the plot.

58 qboxplot

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the square-
roots of the number of observations in the groups.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches of
two plots do not overlap this is ‘strong evidence’ that the two medians differ
(Chambers et al., 1983, p. 62). See boxplot.stats for the calculations used.

outline if outline is not true, the outliers are not drawn (as points whereas S+ uses
lines).

names group labels which will be printed under each boxplot. Can be a character vector
or an expression (see plotmath).

boxwex a scale factor to be applied to all boxes. When there are only a few groups, the
appearance of the plot can be improved by making the boxes narrower.

staplewex staple line width expansion, proportional to box width.

outwex outlier line width expansion, proportional to box width.

plot if TRUE (the default) then a boxplot is produced. If not, the summaries which the
boxplots are based on are returned.

border an optional vector of colors for the outlines of the boxplots. The values in
border are recycled if the length of border is less than the number of plots.

col if col is non-null it is assumed to contain colors to be used to colour the bodies
of the box plots. By default they are in the background colour.

log character indicating if x or y or both coordinates should be plotted in log scale.

pars a list of (potentially many) more graphical parameters, e.g., boxwex or outpch;
these are passed to bxp (if plot is true); for details, see there.

horizontal logical indicating if the boxplots should be horizontal; default FALSE means
vertical boxes.

add logical, if true add boxplot to current plot.

at numeric vector giving the locations where the boxplots should be drawn, partic-
ularly when add = TRUE; defaults to 1:n where n is the number of boxes.

type an integer between 1 and 9 selecting one of nine quantile algorithms; for more
details see quantile.

Details

The generic function qboxplot currently has a default method (qboxplot.default) and a formula
interface (qboxplot.formula).

If multiple groups are supplied either as multiple arguments or via a formula, parallel boxplots will
be plotted, in the order of the arguments or the order of the levels of the factor (see factor).

Missing values are ignored when forming boxplots.

Value

List with the following components:

stats a matrix, each column contains the extreme of the lower whisker, the lower
hinge, the median, the upper hinge and the extreme of the upper whisker for one
group/plot. If all the inputs have the same class attribute, so will this component.

qboxplot 59

n a vector with the number of observations in each group.

conf a matrix where each column contains the lower and upper extremes of the notch.

out the values of any data points which lie beyond the extremes of the whiskers.

group a vector of the same length as out whose elements indicate to which group the
outlier belongs.

names a vector of names for the groups.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data
Analysis. Wadsworth & Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See also boxplot.stats.

See Also

qbxp.stats which does the computation, bxp for the plotting and more examples; and stripchart
for an alternative (with small data sets).

Examples

adapted examples from boxplot

qboxplot on a formula:
qboxplot(count ~ spray, data = InsectSprays, col = "lightgray")
add notches (somewhat funny here):
qboxplot(count ~ spray, data = InsectSprays,

notch = TRUE, add = TRUE, col = "blue")

qboxplot(decrease ~ treatment, data = OrchardSprays,
log = "y", col = "bisque")

rb <- qboxplot(decrease ~ treatment, data = OrchardSprays, col="bisque")
title("Comparing boxplot()s and non-robust mean +/- SD")

mn.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, mean)
sd.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, sd)
xi <- 0.3 + seq(rb$n)
points(xi, mn.t, col = "orange", pch = 18)
arrows(xi, mn.t - sd.t, xi, mn.t + sd.t,

code = 3, col = "pink", angle = 75, length = .1)

boxplot on a matrix:

60 qbxp.stats

mat <- cbind(Uni05 = (1:100)/21, Norm = rnorm(100),
`5T` = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))

qboxplot(as.data.frame(mat),
main = "qboxplot(as.data.frame(mat), main = ...)")

par(las=1)# all axis labels horizontal
qboxplot(as.data.frame(mat), main = "boxplot(*, horizontal = TRUE)",

horizontal = TRUE)

Using 'at = ' and adding boxplots -- example idea by Roger Bivand :

qboxplot(len ~ dose, data = ToothGrowth,
boxwex = 0.25, at = 1:3 - 0.2,
subset = supp == "VC", col = "yellow",
main = "Guinea Pigs' Tooth Growth",
xlab = "Vitamin C dose mg",
ylab = "tooth length",
xlim = c(0.5, 3.5), ylim = c(0, 35), yaxs = "i")

qboxplot(len ~ dose, data = ToothGrowth, add = TRUE,
boxwex = 0.25, at = 1:3 + 0.2,
subset = supp == "OJ", col = "orange")

legend(2, 9, c("Ascorbic acid", "Orange juice"),
fill = c("yellow", "orange"))

qbxp.stats Box Plot Statistics

Description

This functions works identical to boxplot.stats. It is typically called by another function to gather
the statistics necessary for producing box plots, but may be invoked separately.

Usage

qbxp.stats(x, coef = 1.5, do.conf = TRUE, do.out = TRUE, type = 7)

Arguments

x a numeric vector for which the boxplot will be constructed (NAs and NaNs are
allowed and omitted).

coef it determines how far the plot ‘whiskers’ extend out from the box. If coef is
positive, the whiskers extend to the most extreme data point which is no more
than coef times the length of the box away from the box. A value of zero causes
the whiskers to extend to the data extremes (and no outliers be returned).

do.conf logical; if FALSE, the conf component will be empty in the result.

do.out logical; if FALSE, out component will be empty in the result.

type an integer between 1 and 9 selecting one of nine quantile algorithms; for more
details see quantile.

qbxp.stats 61

Details

The notches (if requested) extend to +/-1.58 IQR/sqrt(n). This seems to be based on the same
calculations as the formula with 1.57 in Chambers et al. (1983, p. 62), given in McGill et al. (1978,
p. 16). They are based on asymptotic normality of the median and roughly equal sample sizes for
the two medians being compared, and are said to be rather insensitive to the underlying distributions
of the samples. The idea appears to be to give roughly a 95% confidence interval for the difference
in two medians.

Value

List with named components as follows:

stats a vector of length 5, containing the extreme of the lower whisker, the first quar-
tile, the median, the third quartile and the extreme of the upper whisker.

n the number of non-NA observations in the sample.

conf the lower and upper extremes of the ‘notch’ (if(do.conf)). See the details.

out the values of any data points which lie beyond the extremes of the whiskers
(if(do.out)).

Note that $stats and $conf are sorted in increasing order, unlike S, and that $n and $out include
any +- Inf values.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Tukey, J. W. (1977) Exploratory Data Analysis. Section 2C.

McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American Statisti-
cian 32, 12–16.

Velleman, P. F. and Hoaglin, D. C. (1981) Applications, Basics and Computing of Exploratory Data
Analysis. Duxbury Press.

Emerson, J. D and Strenio, J. (1983). Boxplots and batch comparison. Chapter 3 of Understanding
Robust and Exploratory Data Analysis, eds. D. C. Hoaglin, F. Mosteller and J. W. Tukey. Wiley.

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data
Analysis. Wadsworth & Brooks/Cole.

See Also

quantile, boxplot.stats

Examples

adapted example from boxplot.stats
x <- c(1:100, 1000)
(b1 <- qbxp.stats(x))
(b2 <- qbxp.stats(x, do.conf=FALSE, do.out=FALSE))

62 quantileCI

stopifnot(b1$stats == b2$stats) # do.out=F is still robust
qbxp.stats(x, coef = 3, do.conf=FALSE)
no outlier treatment:
qbxp.stats(x, coef = 0)

qbxp.stats(c(x, NA)) # slight change : n is 101
(r <- qbxp.stats(c(x, -1:1/0)))
stopifnot(r$out == c(1000, -Inf, Inf))

quantileCI Confidence Intervals for Quantiles

Description

These functions can be used to compute confidence intervals for quantiles (including median).

Usage

quantileCI(x, prob = 0.5, conf.level = 0.95, method = "exact",
minLength = FALSE, na.rm = FALSE)

medianCI(x, conf.level = 0.95, method = "exact",
minLength = FALSE, na.rm = FALSE)

madCI(x, conf.level = 0.95, method = "exact", minLength = FALSE,
na.rm = FALSE, constant = 1.4826)

Arguments

x numeric data vector

prob quantile

conf.level confidence level

method character string specifing which method to use; see details.

minLength logical, see details

na.rm logical, remove NA values.

constant scale factor (see mad).

Details

The exact confidence interval (method = "exact") is computed using binomial probabilities; see
Section 6.8.1 in Sachs and Hedderich (2009). If the result is not unique, i.e. there is more than
one interval with coverage proability closest to conf.level, then a matrix of confidence intervals
is returned. If minLength = TRUE, an exact confidence interval with minimum length is returned.

The asymptotic confidence interval (method = "asymptotic") is based on the normal approxima-
tion of the binomial distribution; see Section 6.8.1 in Sachs and Hedderich (2009).

repMeans 63

Value

A list with components

estimate the sample quantile.

CI a confidence interval for the sample quantile.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

L. Sachs and J. Hedderich (2009). Angewandte Statistik. Springer.

See Also

binom.test, binconf

Examples

To get a non-trivial exact confidence interval for the median
one needs at least 6 observations
set.seed(123)
x <- rnorm(8)
exact confidence interval not unique
medianCI(x)
madCI(x)

minimum length exact confidence interval
medianCI(x, minLength = TRUE)
madCI(x, minLength = TRUE)

asymptotic confidence interval
medianCI(x, method = "asymptotic")
madCI(x, method = "asymptotic")

confidence interval for quantiles
quantileCI(x, prob = 0.4)
quantileCI(x, prob = 0.6)

repMeans Compute mean of replicated spots

Description

Compute mean of replicated spots where additionally spot flags may incorporated.

Usage

repMeans(x, flags, use.flags = NULL, ndups, spacing, method, ...)

64 repMeans

Arguments

x matrix or data.frame of expression values

flags matrix or data.frame of spot flags; must have same dimension as x

use.flags should flags be included and in which way; cf. section details

ndups integer, number of replicates on chip. The number of rows of x must be divisible
by ndups

spacing the spacing between the rows of ’x’ corresponding to replicated spots, spacing
= 1 for consecutive spots; cf. function unwrapdups in package "limma"

method function to aggregate the replicated spots. If missing, the mean is used.

... optional arguments to method.

Details

The incorporation of spot flags is controlled via argument use.flags.

NULL: flags are not used; minimum flag value of replicated spots is returned

"max": only spots with flag value equal to the maximum flag value of replicated spots are used

"median": only spots with flag values larger or equal to median of replicated spots are used

"mean": only spots with flag values larger or equal to mean of replicated spots are used

Value

LIST with components

exprs mean of expression values

flags flags for mean expression values

Note

A first version of this function appeared in package SLmisc.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

See Also

unwrapdups

Examples

only a dummy example
M <- matrix(rnorm(1000), ncol = 10)
FL <- matrix(rpois(1000, lambda = 10), ncol = 10) # only for this example
res <- repMeans(x = M, flags = FL, use.flags = "max", ndups = 5, spacing = 20)

risks 65

risks Compute RR, OR, etc.

Description

The function computes relative risk (RR), odds ration (OR), and several other risk measures; see
details.

Usage

risks(p0, p1)

Arguments

p0 numeric vector of length 1: incidence of the outcome of interest in the nonex-
posed group.

p1 numeric vector of length 1: incidence of the outcome of interest in the exposed
group.

Details

The function computes relative risk (RR), odds-ratio (OR), relative risk reduction (RRR) resp. rel-
ative risk increase (RRI), absolute risk reduction (ARR) resp. absolute risk increase (ARI), number
needed to treat (NNT) resp. number needed to harm (NNH).

Value

Vector including several risk measures.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

See for instance: Relative risk. (2016, November 4). In Wikipedia, The Free Encyclopedia.
Retrieved 19:58, November 4, 2016, from https://en.wikipedia.org/w/index.php?title=
Relative_risk&oldid=747857409

Examples

See worked example in Wikipedia
risks(p0 = 0.4, p1 = 0.1)
risks(p0 = 0.4, p1 = 0.5)

https://en.wikipedia.org/w/index.php?title=Relative_risk&oldid=747857409
https://en.wikipedia.org/w/index.php?title=Relative_risk&oldid=747857409

66 rrCI

rrCI Compute Approximate Confidence Interval for RR.

Description

The function computes an approximate confidence interval for the relative risk (RR).

Usage

rrCI(a, b, c, d, conf.level = 0.95)

Arguments

a integer: events in exposed group.

b integer: non-events in exposed group.

c integer: events in non-exposed group.

d integer: non-events in non-exposed group.

conf.level numeric: confidence level

Details

The function computes an approximate confidence interval for the relative risk (RR) based on the
normal approximation; see Jewell (2004).

Value

A list with class "confint" containing the following components:

estimate the estimated relative risk.

conf.int a confidence interval for the relative risk.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Jewell, Nicholas P. (2004). Statistics for epidemiology. Chapman & Hall/CRC.

Relative risk. (2016, November 4). In Wikipedia, The Free Encyclopedia. Retrieved 19:58, Novem-
ber 4, 2016, from https://en.wikipedia.org/w/index.php?title=Relative_risk&oldid=
747857409

Examples

See worked example in Wikipedia
rrCI(a = 15, b = 135, c = 100, d = 150)
rrCI(a = 75, b = 75, c = 100, d = 150)

https://en.wikipedia.org/w/index.php?title=Relative_risk&oldid=747857409
https://en.wikipedia.org/w/index.php?title=Relative_risk&oldid=747857409

simCorVars 67

simCorVars Simulate correlated variables.

Description

The function simulates a pair of correlated variables.

Usage

simCorVars(n, r, plot = TRUE)

Arguments

n integer: sample size.

r numeric: correlation.

plot logical: generate scatter plot of the variables.

Details

The function is mainly for teaching purposes and simulates n observations from a pair of normal
distributed variables with correlation r.

By specifying plot = TRUE a scatter plot of the data is generated.

Value

data.frame with entries Var1 and Var2

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

Examples

res <- simCorVars(n = 100, r = 0.8)
cor(res$Var1, res$Var2)

68 simPlot

simPlot Plot of a similarity matrix.

Description

Plot of similarity matrix.

Usage

simPlot(x, col, minVal, labels = FALSE, lab.both.axes = FALSE,
labcols = "black", title = "", cex.title = 1.2,
protocol = FALSE, cex.axis = 0.8,
cex.axis.bar = 1, signifBar = 2, ...)

Arguments

x quadratic data matrix.

col colors palette for image. If missing, the RdYlGn palette of RColorBrewer is
used.

minVal numeric, minimum value which is display by a color; used to adjust col

labels vector of character strings to be placed at the tickpoints, labels for the columns
of x.

lab.both.axes logical, display labels on both axes

labcols colors to be used for the labels of the columns of x. labcols can have either
length 1, in which case all the labels are displayed using the same color, or the
same length as labels, in which case a color is specified for the label of each
column of x.

title character string, overall title for the plot.

cex.title A numerical value giving the amount by which plotting text and symbols should
be magnified relative to the default; cf. par, cex.main.

protocol logical, display color bar without numbers

cex.axis The magnification to be used for axis annotation relative to the current setting
of ’cex’; cf. par.

cex.axis.bar The magnification to be used for axis annotation of the color bar relative to the
current setting of ’cex’; cf. par.

signifBar integer indicating the precision to be used for the bar.

... graphical parameters may also be supplied as arguments to the function (see
par). For comparison purposes, it is good to set zlim=c(-1,1).

Details

This functions generates a so called similarity matrix.

If min(x) is smaller than minVal, the colors in col are adjusted such that the minimum value which
is color coded is equal to minVal.

SNR 69

Value

invisible()

Note

The function is a slight modification of function corPlot of package MKmisc.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Sandrine Dudoit, Yee Hwa (Jean) Yang, Benjamin Milo Bolstad and with contributions from Natalie
Thorne, Ingrid Loennstedt and Jessica Mar. sma: Statistical Microarray Analysis.
http://www.stat.berkeley.edu/users/terry/zarray/Software/smacode.html

Examples

only a dummy example
M <- matrix(rnorm(1000), ncol = 20)
colnames(M) <- paste("Sample", 1:20)
M.cor <- cor(M)

simPlot(M.cor, minVal = min(M.cor))
simPlot(M.cor, minVal = min(M.cor), lab.both.axes = TRUE)
simPlot(M.cor, minVal = min(M.cor), protocol = TRUE)
simPlot(M.cor, minVal = min(M.cor), signifBar = 1)

SNR Compute SNR

Description

The functions compute SNR as well as two robust versions of the SNR.

Usage

SNR(x, na.rm = FALSE)

Arguments

x numeric vector.

na.rm logical. Should missing values be removed?

70 ssize.pcc

Details

The functions compute the (classical) coefficient of variation as well as two robust variants.

medSNR uses the (standardized) MAD instead of SD and median instead of mean.

iqrSNR uses the (standardized) IQR instead of SD and median instead of mean.

Value

SNR value.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

C.N.P.G. Arachchige, L.A. Prendergast and R.G. Staudte. Robust analogues to the Coefficient of
Variation. https://arxiv.org/abs/1907.01110.

Examples

5% outliers
out <- rbinom(100, prob = 0.05, size = 1)
sum(out)
x <- (1-out)*rnorm(100, mean = 10, sd = 2) + out*25
SNR(x)
medSNR(x)
iqrSNR(x)

ssize.pcc Sample Size Planning for Developing Classifiers Using High Dimen-
sional Data

Description

Calculate sample size for training set in developing classifiers using high dimensional data. The
calculation is based on the probability of correct classification (PCC).

Usage

ssize.pcc(gamma, stdFC, prev = 0.5, nrFeatures, sigFeatures = 20, verbose = FALSE)

ssize.pcc 71

Arguments

gamma tolerance between PCC(infty) and PCC(n).

stdFC expected standardized fold-change; that is, expected fold-change devided by
within class standard deviation.

prev expected prevalence.

nrFeatures number of features (variables) considered.

sigFeatures number of significatn features; default (20) should be sufficient for most if not
all cases.

verbose print intermediate results.

Details

The computations are based the algorithm provided in Section~4.2 of Dobbin and Simon (2007).
Prevalence is incorporated by the simple rough approach given in Section~4.4 (ibid.).

The results for prevalence equal to $50%$ are identical to the numbers computed by https://brb.
nci.nih.gov/brb/samplesize/samplesize4GE.html. For other prevalences the numbers differ
and are larger for our implementation.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

optimize is used to solve equation (4.3) of Dobbin and Simon (2007), so you may see errors from
it.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

K. Dobbin and R. Simon (2007). Sample size planning for developing classifiers using high-
dimensional DNA microarray data. Biostatistics, 8(1):101-117.

K. Dobbin, Y. Zhao, R. Simon (2008). How Large a Training Set is Needed to Develop a Classifier
for Microarray Data? Clin Cancer Res., 14(1):108-114.

See Also

optimize

https://brb.nci.nih.gov/brb/samplesize/samplesize4GE.html
https://brb.nci.nih.gov/brb/samplesize/samplesize4GE.html

72 stringDist

Examples

see Table 2 of Dobbin et al. (2008)
g <- 0.1
fc <- 1.6
ssize.pcc(gamma = g, stdFC = fc, nrFeatures = 22000)

see Table 3 of Dobbin et al. (2008)
g <- 0.05
fc <- 1.1
ssize.pcc(gamma = g, stdFC = fc, nrFeatures = 22000)

stringDist Function to compute distances between strings

Description

The function can be used to compute distances between strings.

Usage

stringDist(x, y, method = "levenshtein", mismatch = 1, gap = 1)

Arguments

x character vector, first string

y character vector, second string

method character, name of the distance method. This must be "levenshtein" or "hamming".
Default is the classical Levenshtein distance.

mismatch numeric, distance value for a mismatch between symbols

gap numeric, distance value for inserting a gap

Details

The function computes the Hamming and the Levenshtein (edit) distance of two given strings (se-
quences).

In case of the Hamming distance the two strings must have the same length.

In case of the Levenshtein (edit) distance a scoring and a trace-back matrix are computed and are
saved as attributes "ScoringMatrix" and "TraceBackMatrix". The characters in the trace-back
matrix reflect insertion of a gap in string y (d: deletion), match (m), mismatch (mm), and insertion of
a gap in string x (i).

Value

stringDist returns an object of S3 class "stringDist" inherited from class "dist"; cf. dist.

stringSim 73

Note

The function is mainly for teaching purposes.
For distances between strings and string alignments see also Bioconductor package Biostrings.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

R. Merkl and S. Waack (2009). Bioinformatik Interaktiv. Wiley.

See Also

dist, stringSim

Examples

x <- "GACGGATTATG"
y <- "GATCGGAATAG"
Levenshtein distance
d <- stringDist(x, y)
d
attr(d, "ScoringMatrix")
attr(d, "TraceBackMatrix")

Hamming distance
stringDist(x, y)

stringSim Function to compute similarity scores between strings

Description

The function can be used to compute similarity scores between strings.

Usage

stringSim(x, y, global = TRUE, match = 1, mismatch = -1, gap = -1, minSim = 0)

Arguments

x character vector, first string
y character vector, second string
global logical; global or local alignment
match numeric, score for a match between symbols
mismatch numeric, score for a mismatch between symbols
gap numeric, penalty for inserting a gap
minSim numeric, used as required minimum score in case of local alignments

74 stringSim

Details

The function computes optimal alignment scores for global (Needleman-Wunsch) and local (Smith-
Waterman) alignments with constant gap penalties.

Scoring and trace-back matrix are computed and saved in form of attributes "ScoringMatrix" and
"TraceBackMatrix". The characters in the trace-back matrix reflect insertion of a gap in string y
(d: deletion), match (m), mismatch (mm), and insertion of a gap in string x (i). In addition stop
indicates that the minimum similarity score has been reached.

Value

stringSim returns an object of S3 class "stringSim" inherited from class "dist"; cf. dist.

Note

The function is mainly for teaching purposes.

For distances between strings and string alignments see also Bioconductor package Biostrings.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

R. Merkl and S. Waack (2009). Bioinformatik Interaktiv. Wiley.

See Also

dist, stringDist

Examples

x <- "GACGGATTATG"
y <- "GATCGGAATAG"

optimal global alignment score
d <- stringSim(x, y)
d
attr(d, "ScoringMatrix")
attr(d, "TraceBackMatrix")

optimal local alignment score
d <- stringSim(x, y, global = FALSE)
d
attr(d, "ScoringMatrix")
attr(d, "TraceBackMatrix")

thyroid 75

thyroid Plot TSH, fT3 and fT4 with respect to reference range.

Description

The function computes and plots TSH, fT3 and fT4 values with respect to the provided reference
range.

Usage

thyroid(TSH, fT3, fT4, TSHref, fT3ref, fT4ref)

Arguments

TSH numeric vector of length 1: measured TSH concentration.

fT3 numeric vector of length 1: measured fT3 concentration.

fT4 numeric vector of length 1: measured fT4 concentration.

TSHref numeric vector of length 2: reference range TSH.

fT3ref numeric vector of length 2: reference range fT3.

fT4ref numeric vector of length 2: reference range fT4.

Details

A simple function that computes the relative values of the measured values with respect to the
provided reference range and visualizes the values using a barplot. Relative values between 40%
and 60% are marked as O.K..

Value

Invisible data.frame with the relative values.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

Examples

thyroid(TSH = 1.5, fT3 = 2.5, fT4 = 14, TSHref = c(0.2, 3.0),
fT3ref = c(1.7, 4.2), fT4ref = c(7.6, 15.0))

76 traceBack

traceBack Function to trace back

Description

Function computes an optimal global or local alignment based on a trace back matrix as provided
by function stringDist or stringSim.

Usage

traceBack(D, global = TRUE)

Arguments

D object of class "stringDist"

global logical, global or local alignment

Details

Computes one possible optimal global or local alignment based on the trace back matrix saved in
an object of class "stringDist" or "stringSim".

Value

matrix: pairwise global/local alignment

Note

The function is mainly for teaching purposes.

For distances between strings and string alignments see Bioconductor package Biostrings.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

R. Merkl and S. Waack (2009). Bioinformatik Interaktiv. Wiley.

See Also

stringDist

transformations 77

Examples

x <- "GACGGATTATG"
y <- "GATCGGAATAG"

Levenshtein distance
d <- stringDist(x, y)
optimal global alignment
traceBack(d)

Optimal global alignment score
d <- stringSim(x, y)
optimal global alignment
traceBack(d)

Optimal local alignment score
d <- stringSim(x, y, global = FALSE)
optimal local alignment
traceBack(d, global = FALSE)

transformations New Transformations for Use with ggplot2 Package

Description

The functions generate new transformations for the generalized logarithm and the negative loga-
rithm that can be used for transforming the axes in ggplot2 plots.

Usage

glog_trans(base = exp(1))
glog10_trans()
glog2_trans()
scale_y_glog(...)
scale_x_glog(...)
scale_y_glog10(...)
scale_x_glog10(...)
scale_y_glog2(...)
scale_x_glog2(...)
neglog_breaks(n = 5, base = 10)
neglog_trans(base = exp(1))
neglog10_trans()
neglog2_trans()
scale_y_neglog(...)
scale_x_neglog(...)
scale_y_neglog10(...)
scale_x_neglog10(...)
scale_y_neglog2(...)
scale_x_neglog2(...)

78 transformations

Arguments

base a positive or a positive or complex number: the base with respect to which
generalized and negative logarithms are computed. Defaults to e=exp(1).

... Arguments passed on to scale_(x|y)_continuous.

n desired number of breaks.

Details

The functions can be used to transform axes in ggplot2 plots. The implementation is analogous to
e.g. scale_y_log10.

The negative logarithm is for instance of use in case of p values (e.g. volcano plots),

The functions were adapted from packages scales and ggplot2.

Value

A transformation.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

See Also

scale_continuous, log_trans

Examples

library(ggplot2)
data(mpg)
p1 <- ggplot(mpg, aes(displ, hwy)) + geom_point()
p1
p1 + scale_x_log10()
p1 + scale_x_glog10()
p1 + scale_y_log10()
p1 + scale_y_glog10()

A volcano plot
x <- matrix(rnorm(1000, mean = 10), nrow = 10)
g1 <- rep("control", 10)
y1 <- matrix(rnorm(500, mean = 11.25), nrow = 10)
y2 <- matrix(rnorm(500, mean = 9.75), nrow = 10)
g2 <- rep("treatment", 10)
group <- factor(c(g1, g2))
Data <- rbind(x, cbind(y1, y2))
pvals <- apply(Data, 2, function(x, group) t.test(x ~ group)$p.value,

group = group)

twoWayAnova 79

compute log-fold change
logfc <- function(x, group){

res <- tapply(x, group, mean)
log2(res[1]/res[2])

}
lfcs <- apply(Data, 2, logfc, group = group)
ps <- data.frame(pvals = pvals, logfc = lfcs)
ggplot(ps, aes(x = logfc, y = pvals)) + geom_point() +

geom_hline(yintercept = 0.05) + scale_y_neglog10() +
geom_vline(xintercept = c(-0.1, 0.1)) + xlab("log-fold change") +
ylab("-log10(p value)") + ggtitle("A Volcano Plot")

twoWayAnova A function for Analysis of Variance

Description

This function is a slight modification of function Anova of package "genefilter".

Usage

twoWayAnova(cov1, cov2, interaction, na.rm = TRUE)

Arguments

cov1 The first covariate. It must have length equal to the number of columns of the
array that the result of twoWayAnova will be applied to.

cov2 The second covariate. It must have length equal to the number of columns of the
array that the result of twoWayAnova will be applied to.

interaction logical, should interaction be considered

na.rm a logical value indicating whether ’NA’ values should be stripped before the
computation proceeds.

Details

The function returned by twoWayAnova uses lm to fit a linear model of the form lm(x ~ cov1*cov2),
where x is the set of gene expressions. The F statistics for the main effects and the interaction are
computed and the corresponding p-values are returned.

Value

twoWayAnova returns a function with bindings for cov1 and cov2that will perform a two-way
ANOVA.

Note

A first version of this function appeared in package SLmisc.

80 twoWayAnova

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

R. Gentleman, V. Carey, W. Huber and F. Hahne (2006). genefilter: methods for filtering genes
from microarray experiments. R package version 1.13.7.

See Also

Anova

Examples

set.seed(123)
af1 <- twoWayAnova(c(rep(1,6),rep(2,6)), rep(c(rep(1,3), rep(2,3)), 2))
af2 <- twoWayAnova(c(rep(1,6),rep(2,6)), rep(c(rep(1,3), rep(2,3)), 2),

interaction = FALSE)
x <- matrix(rnorm(12*10), nrow = 10)
apply(x, 1, af1)
apply(x, 1, af2)

Index

∗ distribution
fiveNS, 13
IQrange, 21
meanAD, 25

∗ dplot
qbxp.stats, 60

∗ hplot
heatmapCol, 15
madPlot, 23
qboxplot, 57
thyroid, 75
transformations, 77

∗ htest
hsu.t.test, 17
mi.t.test, 27
mod.oneway.test, 30
mod.t.test, 31
oneWayAnova, 36
pairwise.mod.t.test, 44
power.diagnostic.test, 47
power.hsu.t.test, 49
power.nb.test, 51
power.welch.t.test, 53
ssize.pcc, 70
twoWayAnova, 79

∗ models
oneWayAnova, 36
twoWayAnova, 79

∗ multivariate
corDist, 8

∗ package
MKmisc-package, 3

∗ robust
IQrange, 21
meanAD, 25

∗ univar
AUC, 3
AUC.test, 4
binomCI, 6

corPlot, 9
CV, 11
cvCI, 12
fiveNS, 13
glog, 14
HLgof.test, 16
imputeSD, 19
IQrange, 21
madMatrix, 22
meanAD, 25
melt.long, 26
normCI, 33
normDiffCI, 34
optCutoff, 37
or2rr, 38
pairwise.auc, 39
pairwise.fc, 40
pairwise.fun, 42
pairwise.logfc, 43
perfMeasures, 45
predValues, 55
print.confint, 56
quantileCI, 62
repMeans, 63
risks, 65
rrCI, 66
simCorVars, 67
simPlot, 68
SNR, 69
stringDist, 72
stringSim, 73
traceBack, 76

Anova, 36, 37, 79, 80
AUC, 3, 5, 40
AUC.test, 4

binconf, 7, 63
binom.test, 7, 63
binomCI, 6

81

82 INDEX

boxplot, 57
boxplot.stats, 58–61
bxp, 57–59

cor, 8
corDist, 8
corPlot, 9, 24, 69
covMcd, 8
covOGK, 8
CV, 11, 13
cvCI, 12

dist, 8, 72–74

ebayes, 30, 31, 44
expression, 58

factor, 58
fiveNS, 13
fivenum, 13, 14

glm.nb, 52
glog, 14
glog10 (glog), 14
glog10_trans (transformations), 77
glog2 (glog), 14
glog2_trans (transformations), 77
glog_trans (transformations), 77

heatmapCol, 15
HLgof.test, 16
hsu.t.test, 17

imputeSD, 19
inv.glog (glog), 14
inv.glog10 (glog), 14
inv.glog2 (glog), 14
IQR, 21
IQrange, 21
iqrCV (CV), 11
iqrSNR (SNR), 69

lm, 79
log_trans, 78

mad, 25, 62
madCI (quantileCI), 62
madMatrix, 22
madPlot, 23
meanAD, 25

medCV (CV), 11
medianCI (quantileCI), 62
medSNR (SNR), 69
melt.long, 26
mi.t.test, 27
MKmisc (MKmisc-package), 3
MKmisc-package, 3
mod.oneway.test, 30
mod.t.test, 31
model.frame, 18

NA, 57, 60
NaN, 60
neglog10_trans (transformations), 77
neglog2_trans (transformations), 77
neglog_breaks (transformations), 77
neglog_trans (transformations), 77
normCI, 33
normDiffCI, 34

oneway.test, 31, 36, 37, 44
oneWayAnova, 36
optCutoff, 37
optimize, 71
or2rr, 38

p.adjust, 30, 31, 44
pairwise.auc, 39, 42
pairwise.fc, 40, 42
pairwise.fun, 42
pairwise.logfc, 42, 43
pairwise.mod.t.test, 44
pairwise.t.test, 40–43
par, 10, 24, 68
perfMeasures, 45
perfScores (perfMeasures), 45
plotmath, 58
power.diagnostic.test, 47
power.hsu.t.test, 49
power.nb.test, 51
power.t.test, 50, 54
power.welch.t.test, 50, 53
predValues, 55
print, 56
print.confint, 56
print.power.htest, 56

qboxplot, 57
qbxp.stats, 59, 60

INDEX 83

quantile, 13, 14, 21, 58, 60, 61
quantileCI, 62

repMeans, 63
residuals.lrm, 17
risks, 65
rnegbin, 51, 52
rrCI, 66

scale_continuous, 78
scale_x_glog (transformations), 77
scale_x_glog10 (transformations), 77
scale_x_glog2 (transformations), 77
scale_x_neglog (transformations), 77
scale_x_neglog10 (transformations), 77
scale_x_neglog2 (transformations), 77
scale_y_glog (transformations), 77
scale_y_glog10 (transformations), 77
scale_y_glog2 (transformations), 77
scale_y_neglog (transformations), 77
scale_y_neglog10 (transformations), 77
scale_y_neglog2 (transformations), 77
sd, 25
simCorVars, 67
simPlot, 68
sIQR (IQrange), 21
SNR, 69
ssize.pcc, 70
stringDist, 72, 74, 76
stringSim, 73, 73, 76
stripchart, 59
strwrap, 56

t.test, 18, 19, 29, 32, 50, 54
thyroid, 75
toptable, 30, 31, 44
traceBack, 76
transformations, 77
twoWayAnova, 79

uniroot, 48, 50, 54
unwrapdups, 64

wilcox.test, 5

	MKmisc-package
	AUC
	AUC.test
	binomCI
	corDist
	corPlot
	CV
	cvCI
	fiveNS
	glog
	heatmapCol
	HLgof.test
	hsu.t.test
	imputeSD
	IQrange
	madMatrix
	madPlot
	meanAD
	melt.long
	mi.t.test
	mod.oneway.test
	mod.t.test
	normCI
	normDiffCI
	oneWayAnova
	optCutoff
	or2rr
	pairwise.auc
	pairwise.fc
	pairwise.fun
	pairwise.logfc
	pairwise.mod.t.test
	perfMeasures
	power.diagnostic.test
	power.hsu.t.test
	power.nb.test
	power.welch.t.test
	predValues
	print.confint
	qboxplot
	qbxp.stats
	quantileCI
	repMeans
	risks
	rrCI
	simCorVars
	simPlot
	SNR
	ssize.pcc
	stringDist
	stringSim
	thyroid
	traceBack
	transformations
	twoWayAnova
	Index

